skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disentangling the visual cues of an evolutionary trap for aquatic insects
Abstract Aquatic insects use polarized light as a reliable visual cue for locating water surfaces given their need to locate sites for oviposition. However, many man-made surfaces polarize light more strongly than natural waterbodies creating an evolutionary trap in which many species preferentially lay their eggs on these polarizing artificial surfaces. Previous work has shown that the attractiveness of artificial surfaces to aquatic insects is diminished by adding non-polarizing gridlines to these surfaces. However, it is unknown how this mitigation affects aquatic insect preferences. We tested two alternative hypotheses about how aquatic insects judge the quality of potential oviposition sites. The visual averaging hypothesis states that insects judge the quality of a surface based on the percent area of the surface that is polarizing. An alternative hypothesis is that the quality of a polarizing surface is judged by the degree to which it is fragmented by non-polarizing elements. This experiment was conducted using oil tray traps as artificial polarizers whose percentage of polarizing area and the presence/absence of fragmentation was manipulated. Only Diptera were captured in sufficient numbers to test the hypotheses. Our findings for the dominant family in our captures, Dolichopodidae, were consistent with the visual averaging hypothesis – increasing the percent area that was non-polarizing significantly decreased captures, but the fragmentation of a polarizing surface had no significant effect on the number captured. For the other families of aquatic Diptera combined, however, there was a complex interactive effect of percent area of a surface that was polarizing and its fragmentation by non-polarizing gridlines. For the conservation of aquatic insects, these findings support the effectiveness of reducing the attractiveness of artificial polarizing surfaces such as solar panels by adding non-polarizing elements, but also show that for some aquatic insects, it is important to consider if the non-polarizing elements fragment the surface.  more » « less
Award ID(s):
1659816
PAR ID:
10657359
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Evolutionary Ecology
Volume:
40
Issue:
1
ISSN:
0269-7653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many restoration projects' success is not evaluated, despite available conventional ecological assessment methods. There is a need for more flexible, affordable, and efficient methods for evaluation, particularly those that take advantage of new remote sensing and geospatial technologies. This study explores the use of illustrative small unmanned aerial system (sUAS) products, made using a simple structure‐from‐motion photogrammetry workflow, coupled with a visual assessment protocol as a remote evaluation and ecological condition archive approach. Three streams were assessed in the field (“surface assessments”) using the Stream Visual Assessment Protocol Version 2 (SVAP2) and later illustrated in sUAS products. A survey of 10 stream experts was conducted to (1) assess the general utility of the sUAS products (high‐resolution video, orthomosaics, and 3D models), and (2) test whether the experts could interpret the products and apply the 16 SVAP2 elements remotely. The channel condition, bank condition, riparian area quantity, and canopy cover elements were deemed appropriate for remote assessment, while the riparian area quality, water appearance, fish habitat complexity, and aquatic invertebrate complexity elements were deemed appropriate for remote assessment but with some potential limitations due to the quality of the products and varying site conditions. In general, the survey participants agreed that the illustrative products would be useful in stream ecological assessment and restoration evaluation. Although not a replacement for more quantitative surface assessments when required, this remote visual approach is suitable when more general monitoring is satisfactory. 
    more » « less
  2. ABSTRACT Emerging aquatic insects can be an important resource subsidy for a variety of terrestrial consumers, including spiders, birds, bats and lizards. Emergence flux is influenced by a variety of abiotic and biotic variables, such as temperature, drying, and predators and these variables can also control the body size of emergent insects. Despite their importance, these variables can change rapidly during drought conditions as water temperatures rise, surface area decreases and predator densities increase.During 2018, the Konza Prairie Biological Station experienced a record drought: flow ceased in the lower reaches of Kings Creek for the first time in over 40 years of observation, leaving a series of isolated pools. We studied how the drought affected aquatic insect emergence in 12 of these pools via elevated temperatures, decreased surface area, and concentration of predators (e.g. fishes and crayfish) over a four‐week period. We returned in 2020 and sampled emergence in the same pools over 2 weeks under non‐drought conditions to compare emergence between drought and non‐drought conditions.We found three overall patterns: (1) rates of areal emergence abundance and biomass (number or mg DM m−2d−1) did not differ between drought and non‐drought conditions. In contrast, pool‐scale emergence abundance, but not biomass (number or mg DM pool−1d−1), was lower during drought conditions; (2) average midge body size was larger during the drought relative to the non‐drought conditions; (3) environmental variables (e.g. temperature, pool surface area, predator biomass) were not predictive of emergence during drought and non‐drought conditions.Fewer, but larger emergent midges (as seen under drought conditions) may represent a higher quality resource for terrestrial consumers than many smaller midges due to increased per‐capita energy yield. However, due to the overall decrease in water availability throughout the stream network, the overall emergence flux was concentrated in reaches with remaining water during the drought, making pools emergence subsidy hotspots. Overall, these contrasting responses underscore the complex nature of community responses to shifting climatic conditions. 
    more » « less
  3. Abstract Organisms that undergo a shift in ontogeny and habitat type often change their spatial distribution throughout their life cycle, but how this affects population dynamics remains poorly understood.We examined spatial and temporal patterns inAedes nigripesabundance, a widespread univoltine Arctic mosquito species (Diptera: Culicidae), hypothesizing that the spatial distribution of adults would be closely tied to aquatic habitat.We tracked adult densities ofA. nigripesnear Kangerlussuaq, Greenland using emergence traps, CO2‐baited traps, and sweep‐nets.In back‐to‐back years of sampling (2017 and 2018) we found two‐fold variation in overall abundance.Adults were spatially patchy when first emerging from aquatic habitats but within a week, mean capture rates for host‐seeking adult females were similar across locations, even in places far from larval habitat.Daily variation in mosquito captures was primarily explained by weather, with virtually no mosquito activity when temperatures averaged less than 8°C or wind speeds exceeded 6 m/s. Gravid females (3% of resting adults) were spatially patchy on the landscape, but not always in the same places where most adults emerged.The spatial distribution of adults is quickly uncoupled from the spatial distribution of larvae becauseA. nigripesfemales may disperse far from their natal habitats in search of a blood‐meal and high‐quality oviposition habitat. 8. This research highlights the value of studying ecological processes that act at disparate life stages for understanding the population biology of organisms with complex life cycles. 
    more » « less
  4. null (Ed.)
    Background Oviposition decisions are critical to the fitness of herbivorous insects and are often impacted by the availability and condition of host plants. Monarch butterflies ( Danaus plexippus ) rely on milkweeds ( Asclepias spp.) for egg-laying and as food for larvae. Previous work has shown that monarchs prefer to oviposit on recently regrown plant tissues (after removal of above-ground biomass) while larvae grow poorly on plants previously damaged by insects. We hypothesized that these effects may depend on the life-history strategy of plants, as clonal and non-clonal milkweed species differ in resource allocation and defense strategies. Methodology/Principal Findings We first confirmed butterfly preference for regrown tissue in a field survey of paired mowed and unmowed plots of the common milkweed A. syriaca . We then experimentally studied the effects of plant damage (comparing undamaged controls to plants clipped and regrown, or damaged by insects) on oviposition choice, larval performance, and leaf quality of two closely related clonal and non-clonal species pairs: (1) A. syriaca and A. tuberosa , and (2) A. verticillata and A. incarnata . Clonal and non-clonal species displayed different responses to plant damage, impacting the proportions of eggs laid on plants. Clonal species had similar mean proportions of eggs on regrown and control plants (≈35–40% each), but fewer on insect-damaged plants (≈20%). Meanwhile non-clonal species had similar oviposition on insect-damaged and control plants (20–30% each) but more eggs on regrown plants (40–60%). Trait analyses showed reduced defenses in regrown plants and we found some evidence, although variable, for negative effects of insect damage on subsequent larval performance. Conclusions/Significance Overall, non-clonal species are more susceptible and preferred by monarch butterflies following clipping, while clonal species show tolerance to clipping and induced defense to insect herbivory. These results have implications for monarch conservation strategies that involve milkweed habitat management by mowing. More generally, plant life-history may mediate growth and defense strategies, explaining species-level variation in responses to different types of damage. 
    more » « less
  5. Understanding the mechanisms that enable species coexistence is essential for explaining community structure and biodiversity. We tested the hypothesis that dietary niche partitioning facilitates coexistence between two dominant stream predators in western North America: Coastal Giant Salamanders (Dicamptodon tenebrosus) and Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii). These aquatic predators are important regulators of community dynamics and ecosystem processes in stream networks. We analyzed stomach contents from 81 salamanders and 96 trout collected via electrofishing in a 6-km section of Lookout Creek, Oregon, during low flow conditions in summer. We predicted that salamanders, primarily nocturnal benthic feeders, and trout, visual consumers of both terrestrial and aquatic prey, would exhibit distinct diets reducing direct diet overlap. We identified 4,897 prey items, classifying them into aquatic (50) and terrestrial (77) sources across 127 categories. Salamanders primarily preyed on aquatic invertebrates (Trichoptera, Ephemeroptera, and Plecoptera), while trout consumed a mix of terrestrial and aquatic invertebrates (Diptera, Trichoptera, and Plecoptera). Partial dietary overlap confirmed niche differentiation as a likely mechanism facilitating the coexistence of trout and salamanders. These findings highlight the role of dietary partitioning in structuring predator communities and inform predictions of how environmental changes may impact stream ecosystems. 
    more » « less