skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 11, 2026

Title: Efficient Approximation Schemes for Stochastic Probing and Selection-Stopping Problems
In this paper, we propose a general framework to design efficient polynomial-time approximation schemes (EPTASs) for fundamental stochastic combinatorial optimization problems. Technically speaking, our approach relies on presenting tailor-made reductions to a newly introduced multidimensional Santa Claus problem. Even though the single-dimensional version of this problem is already known to be APX-Hard, we prove that an EPTAS can be designed for a constant number of machines and dimensions, which hold for each of our applications. To demonstrate the versatility of our framework, we first study selection-stopping settings to derive an EPTAS for the free-order prophets problem and for its cost-driven generalization, Pandora’s box with commitment. These results constitute the first approximation schemes in the nonadaptive setting and improve on known inefficient polynomial-time approximation schemes (PTASs) for their adaptive variants. Next, turning our attention to stochastic probing problems, we obtain an EPTAS for the adaptive ProbeMax problem as well as for its nonadaptive counterpart. In both cases, state-of-the-art approximability results have been inefficient PTASs (Chen et al. [25], Fu et al. [35]). Funding: This work was supported by the National Science Foundation, Division of Computing and Communication Foundations [Grants 2327010 and 2440113].  more » « less
Award ID(s):
2440113
PAR ID:
10657361
Author(s) / Creator(s):
;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Mathematics of Operations Research
ISSN:
0364-765X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k). 
    more » « less
  2. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical polynomial-time solvable problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [Veldt et al., 2021] introduced the generalized p-mean densest subgraph problem which captures the maxcore problem when p = -∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the objective function is supermodular and hence the problem can be solved in polynomial time. In this work, we focus on the p-mean densest subgraph problem for p ∈ (-∞, 1). We prove that for every p ∈ (-∞,1), the problem is NP-hard, thus resolving an open question from [Veldt et al., 2021]. We also show that for every p ∈ (0,1), the weighted version of the problem is APX-hard. On the algorithmic front, we describe two simple 1/2-approximation algorithms for every p ∈ (-∞, 1). We complement the approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously achieve an approximation factor of at most 1/2. 
    more » « less
  3. Braverman, Mark (Ed.)
    We develop approximation algorithms for set-selection problems with deterministic constraints, but random objective values, i.e., stochastic probing problems. When the goal is to maximize the objective, approximation algorithms for probing problems are well-studied. On the other hand, few techniques are known for minimizing the objective, especially in the adaptive setting, where information about the random objective is revealed during the set-selection process and allowed to influence it. For minimization problems in particular, incorporating adaptivity can have a considerable effect on performance. In this work, we seek approximation algorithms that compare well to the optimal adaptive policy. We develop new techniques for adaptive minimization, applying them to a few problems of interest. The core technique we develop here is an approximate reduction from an adaptive expectation minimization problem to a set of adaptive probability minimization problems which we call threshold problems. By providing near-optimal solutions to these threshold problems, we obtain bicriteria adaptive policies. We apply this method to obtain an adaptive approximation algorithm for the Min-Element problem, where the goal is to adaptively pick random variables to minimize the expected minimum value seen among them, subject to a knapsack constraint. This partially resolves an open problem raised in [Goel et al., 2010]. We further consider three extensions on the Min-Element problem, where our objective is the sum of the smallest k element-weights, or the weight of the min-weight basis of a given matroid, or where the constraint is not given by a knapsack but by a matroid constraint. For all three of the variations we explore, we develop adaptive approximation algorithms for their corresponding threshold problems, and prove their near-optimality via coupling arguments. 
    more » « less
  4. Nonadaptive Stochastic Score Classification Sequential testing problems involve a system with several components, each of which is working with some independent probability. The working/failed status of each component can be determined by performing a test, which is usually expensive. So, the goal is to perform tests in a carefully chosen sequence until the overall system status can be evaluated. These problems arise in a variety of applications, such as healthcare, manufacturing, and telecommunication. A common task in these applications is to categorize the system into one of several classes that correspond to the system status being poor, fair, good, excellent, etc. In “Nonadaptive Stochastic Score Classification and Explainable Half-Space Evaluation,” Ghuge, Gupta, and Nagarajan provide the first constant-factor approximation algorithm for this problem. Moreover, the resulting policy is nonadaptive, which results in significant savings in computational time. The authors also validate their theoretical results via computational experiments, where they observe that their algorithm’s cost is on average at most 50% more than an information-theoretic lower bound. 
    more » « less
  5. We study a general stochastic ranking problem in which an algorithm needs to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, in which the scenario is said to be covered when its function value goes above a given threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless P = NP). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Furthermore, we extend our results to an adaptive vehicle-routing problem, in which costs are determined by an underlying metric. This routing problem is a significant generalization of the previously studied adaptive traveling salesman and traveling repairman problems. Our approximation ratio nearly matches the best bound known for these special cases. Finally, we present experimental results for some applications of adaptive ranking. 
    more » « less