skip to main content


Title: Adaptive Submodular Ranking and Routing
We study a general stochastic ranking problem in which an algorithm needs to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, in which the scenario is said to be covered when its function value goes above a given threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless P = NP). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Furthermore, we extend our results to an adaptive vehicle-routing problem, in which costs are determined by an underlying metric. This routing problem is a significant generalization of the previously studied adaptive traveling salesman and traveling repairman problems. Our approximation ratio nearly matches the best bound known for these special cases. Finally, we present experimental results for some applications of adaptive ranking.  more » « less
Award ID(s):
1750127
NSF-PAR ID:
10196449
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
Volume:
68
Issue:
3
ISSN:
0030-364X
Page Range / eLocation ID:
856 to 877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging. 
    more » « less
  2. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalize methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods. 
    more » « less
  3. We consider the following general network design problem on directed graphs. The input is an asymmetric metric (V, c), root r in V, monotone submodular function f and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a very simple quasi-polynomial time -approximation algorithm for this problem, where k ≤ |V| is the number of vertices in an optimal solution. To the best of our knowledge, this is the first non-trivial approximation ratio for this problem. As a consequence we obtain an O(log^2 k / loglog k) approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio, but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first non-trivial approximation ratio. Under certain complexity assumptions, our approximation ratios are best possible (up to constant factors). 
    more » « less
  4. We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-\epsilon$ approximation for monotone functions and a $1/e-\epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(\log^2{n}/\epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-\epsilon$ approximation using $O(\log(n/\epsilon) \log(1/\epsilon) \log(n+m)/ \epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-\epsilon$ approximation in $O(\log(n/\epsilon)\log(m)/\epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective (Mahoney et al., 2016). Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function. 
    more » « less
  5. We consider the following general network design problem. The input is an asymmetric metric (V, c), root [Formula: see text], monotone submodular function [Formula: see text], and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a simple quasi-polynomial time [Formula: see text]-approximation algorithm for this problem, in which [Formula: see text] is the number of vertices in an optimal solution. As a consequence, we obtain an [Formula: see text]-approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved [Formula: see text]-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first nontrivial approximation ratio. Under certain complexity assumptions, our approximation ratios are the best possible (up to constant factors). 
    more » « less