skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 28, 2026

Title: Large-amplitude variability driven by giant dust storms on a planetary-mass companion
Large-amplitude variations are commonly observed in the atmospheres of directly imaged exoplanets and brown dwarfs. VHS 1256B, the most variable known planet-mass object, exhibits a near-infrared flux change of nearly 40%, with red color and silicate features revealed in recent JWST spectra, challenging current theories. Using a general circulation model, we demonstrate that VHS 1256B’s atmosphere is dominated by planetary-scale dust storms persisting for tens of days, with large patchy clouds propagating with equatorial waves. This weather pattern, distinct from the banded structures seen on solar system giants, simultaneously explains the observed spectra and critical features in the rotational light curves, including the large amplitude, irregular evolution, and wavelength dependence, as well as the variability trends observed in near-infrared color-magnitude diagrams of dusty substellar atmospheres.  more » « less
Award ID(s):
2206317
PAR ID:
10657484
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
48
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b isa<20MJupwidely separated (∼8″,a= 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion. 
    more » « less
  2. Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry. 
    more » « less
  3. Abstract Many sub-Neptune and super-Earth exoplanets are expected to develop metal-enriched atmospheres due to atmospheric loss processes such as photoevaporation or core-powered mass loss. Thermochemical equilibrium calculations predict that at high metallicity and a temperature range of 300–700 K, CO2becomes the dominant carbon species, and graphite may be the thermodynamically favored condensate under low-pressure conditions. Building on prior laboratory findings that such environments yield organic haze rather than graphite, we measured the transmittance spectra of organic haze analogs and graphite samples and computed their optical constants across the measured wavelength range from 0.4 to 25μm. The organic haze exhibits strong vibrational absorption bands, notably at 3.0, 4.5, and 6.0μm, while graphite shows featureless broadband absorption. The derived optical constants of haze and graphite provide the first data set for organic haze analogs formed in CO2-rich atmospheres and offer improved applicability over prior graphite data derived from bulk reflectance or ellipsometry. We implemented these optical constants into the Virga and PICASO cloud and radiative transfer models to simulate transit spectra for GJ 1214b. The synthetic spectra with organic hazes reproduce the muted spectral features in the near-infrared observed by Hubble and general trends observed by JWST for GJ 1214b, while graphite models yield flat spectra across the observed wavelengths. This suggests haze features may serve as observational markers of carbon-rich atmospheres, whereas graphite’s opacity could lead to radius overestimation, offering a possible explanation for superpuff exoplanets. Our work supplies essential optical to infrared data for interpreting observations of CO2-rich exoplanet atmospheres. 
    more » « less
  4. Abstract The photometric and spectral variability of brown dwarfs probes heterogeneous temperature and cloud distributions and traces the atmospheric circulation patterns. We present a new 42 hr Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectral time series of VHS 1256-1257 b, a late L-type planetary-mass companion that has been shown to have one of the highest variability amplitudes among substellar objects. The light curve is rapidly evolving and best fit by a combination of three sine waves with different periods and a linear trend. The amplitudes of the sine waves and the linear slope vary with the wavelength, and the corresponding spectral variability patterns match the predictions by models invoking either heterogeneous clouds or thermal profile anomalies. Combining these observations with previous HST monitoring data, we find that the peak-to-valley flux difference is 33% ± 2% with an even higher amplitude reaching 38% in the J band, the highest amplitude ever observed in a substellar object. The observed light curve can be explained by maps that are composed of zonal waves, spots, or a mixture of the two. Distinguishing the origin of rapid light curve evolution requires additional long-term monitoring. Our findings underscore the essential role of atmospheric dynamics in shaping brown-dwarf atmospheres and highlight VHS 1256-1257 b as one of the most favorable targets for studying the atmospheres, clouds, and atmospheric circulation of planets and brown dwarfs. 
    more » « less
  5. Abstract Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravity log g , which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope  survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories. 
    more » « less