skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 15, 2026

Title: Light Tree Covers, Routing, and Path-Reporting Oracles via Spanning Tree Covers in Doubling Graphs
Award ID(s):
2237288
PAR ID:
10657488
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
2257 to 2268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    A (1+e)-stretch tree cover of a metric space is a collection of trees, where every pair of points has a (1+e)-stretch path in one of the trees. The celebrated Dumbbell Theorem [Arya et al. STOC'95] states that any set of n points in d-dimensional Euclidean space admits a (1+e)-stretch tree cover with O_d(e^{-d} ⋅ log(1/e)) trees, where the O_d notation suppresses terms that depend solely on the dimension d. The running time of their construction is O_d(n log n ⋅ log(1/e)/e^d + n ⋅ e^{-2d}). Since the same point may occur in multiple levels of the tree, the maximum degree of a point in the tree cover may be as large as Ω(log Φ), where Φ is the aspect ratio of the input point set. In this work we present a (1+e)-stretch tree cover with O_d(e^{-d+1} ⋅ log(1/e)) trees, which is optimal (up to the log(1/e) factor). Moreover, the maximum degree of points in any tree is an absolute constant for any d. As a direct corollary, we obtain an optimal {routing scheme} in low-dimensional Euclidean spaces. We also present a (1+e)-stretch Steiner tree cover (that may use Steiner points) with O_d(e^{(-d+1)/2} ⋅ log(1/e)) trees, which too is optimal. The running time of our two constructions is linear in the number of edges in the respective tree covers, ignoring an additive O_d(n log n) term; this improves over the running time underlying the Dumbbell Theorem. 
    more » « less
  2. null (Ed.)