In the Euclidean Steiner Tree problem, we are given as input a set of points (called terminals) in the $$\ell_2$$-metric space and the goal is to find the minimum-cost tree connecting them. Additional points (called Steiner points) from the space can be introduced as nodes in the solution. The seminal works of Arora [JACM'98] and Mitchell [SICOMP'99] provide a Polynomial Time Approximation Scheme (PTAS) for solving the Euclidean Steiner Tree problem in fixed dimensions. However, the problem remains poorly understood in higher dimensions (such as when the dimension is logarithmic in the number of terminals) and ruling out a PTAS for the problem in high dimensions is a notoriously long standing open problem (for example, see Trevisan [SICOMP'00]). Moreover, the explicit construction of optimal Steiner trees remains unknown for almost all well-studied high-dimensional point configurations. Furthermore, a vast majority the state-of-the-art structural results on (high-dimensional) Euclidean Steiner trees were established in the 1960s, with no noteworthy update in over half a century. In this paper, we revisit high-dimensional Euclidean Steiner trees, proving new structural results. We also establish a link between the computational hardness of the Euclidean Steiner Tree problem and understanding the optimal Steiner trees of regular simplices (and simplicial complexes), proposing several conjectures and showing that some of them suffice to resolve the status of the inapproximability of the Euclidean Steiner Tree problem. Motivated by this connection, we investigate optimal Steiner trees of regular simplices, proving new structural properties of their optimal Steiner trees, revisiting an old conjecture of Smith [Algorithmica'92] about their optimal topology, and providing the first explicit, general construction of candidate optimal Steiner trees for that topology.
more »
« less
Optimal Euclidean Tree Covers
A (1+e)-stretch tree cover of a metric space is a collection of trees, where every pair of points has a (1+e)-stretch path in one of the trees. The celebrated Dumbbell Theorem [Arya et al. STOC'95] states that any set of n points in d-dimensional Euclidean space admits a (1+e)-stretch tree cover with O_d(e^{-d} ⋅ log(1/e)) trees, where the O_d notation suppresses terms that depend solely on the dimension d. The running time of their construction is O_d(n log n ⋅ log(1/e)/e^d + n ⋅ e^{-2d}). Since the same point may occur in multiple levels of the tree, the maximum degree of a point in the tree cover may be as large as Ω(log Φ), where Φ is the aspect ratio of the input point set. In this work we present a (1+e)-stretch tree cover with O_d(e^{-d+1} ⋅ log(1/e)) trees, which is optimal (up to the log(1/e) factor). Moreover, the maximum degree of points in any tree is an absolute constant for any d. As a direct corollary, we obtain an optimal {routing scheme} in low-dimensional Euclidean spaces. We also present a (1+e)-stretch Steiner tree cover (that may use Steiner points) with O_d(e^{(-d+1)/2} ⋅ log(1/e)) trees, which too is optimal. The running time of our two constructions is linear in the number of edges in the respective tree covers, ignoring an additive O_d(n log n) term; this improves over the running time underlying the Dumbbell Theorem.
more »
« less
- Award ID(s):
- 2121952
- PAR ID:
- 10598629
- Editor(s):
- Mulzer, Wolfgang; Phillips, Jeff M
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 293
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-316-4
- Page Range / eLocation ID:
- 37:1-37:15
- Subject(s) / Keyword(s):
- Tree cover spanner Steiner point routing bounded-degree quadtree net-tree Theory of computation → Computational geometry
- Format(s):
- Medium: X Size: 15 pages; 773077 bytes Other: application/pdf
- Size(s):
- 15 pages 773077 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in ℝ^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and d ∈ ℕ of the minimum lightness of a (1+ε)-spanner, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ≥ Ω(√n) is the spread of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness Õ(ε^{-(d+1)/2}) in dimensions d ≥ 3. Recently, Bhore and Tóth (2020) established a lower bound of Ω(ε^{-d/2}) for the lightness of Steiner (1+ε)-spanners in ℝ^d, for d ≥ 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d ≥ 2. In this work, we show that for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner (1+ε)-spanner of lightness O(ε^{-1}); this matches the lower bound for d = 2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.more » « less
-
null (Ed.)Lightness and sparsity are two natural parameters for Euclidean (1+ε)-spanners. Classical results show that, when the dimension d ∈ ℕ and ε > 0 are constant, every set S of n points in d-space admits an (1+ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ε > 0 for constant d ∈ ℕ have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+ε)-spanner. They gave upper bounds of Õ(ε^{-(d+1)/2}) for the minimum lightness in dimensions d ≥ 3, and Õ(ε^{-(d-1))/2}) for the minimum sparsity in d-space for all d ≥ 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ∈ Ω(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε^{-d/2}) for the lightness and Ω(ε^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+ε)-spanners of lightness O(ε^{-1}log n) for n points in Euclidean plane.more » « less
-
null (Ed.)Directed Steiner Tree (DST) is a central problem in combinatorial optimization and theoretical computer science: Given a directed graph G = (V, E) with edge costs c ∈ ℝ_{≥ 0}^E, a root r ∈ V and k terminals K ⊆ V, we need to output a minimum-cost arborescence in G that contains an rrightarrow t path for every t ∈ K. Recently, Grandoni, Laekhanukit and Li, and independently Ghuge and Nagarajan, gave quasi-polynomial time O(log²k/log log k)-approximation algorithms for the problem, which are tight under popular complexity assumptions. In this paper, we consider the more general Degree-Bounded Directed Steiner Tree (DB-DST) problem, where we are additionally given a degree bound d_v on each vertex v ∈ V, and we require that every vertex v in the output tree has at most d_v children. We give a quasi-polynomial time (O(log n log k), O(log² n))-bicriteria approximation: The algorithm produces a solution with cost at most O(log nlog k) times the cost of the optimum solution that violates the degree constraints by at most a factor of O(log²n). This is the first non-trivial result for the problem. While our cost-guarantee is nearly optimal, the degree violation factor of O(log²n) is an O(log n)-factor away from the approximation lower bound of Ω(log n) from the Set Cover hardness. The hardness result holds even on the special case of the Degree-Bounded Group Steiner Tree problem on trees (DB-GST-T). With the hope of closing the gap, we study the question of whether the degree violation factor can be made tight for this special case. We answer the question in the affirmative by giving an (O(log nlog k), O(log n))-bicriteria approximation algorithm for DB-GST-T.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k).more » « less