ABSTRACT Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms’ physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals’ physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
more »
« less
This content will become publicly available on August 1, 2026
Emerging frontiers in visual ecology
ABSTRACT Visual ecology, the study of how animals acquire and respond to visual information in nature, has grown rapidly over the past few decades. Research in this field has transformed our understanding of fundamental processes, such as the neurobiological basis of behavior and the diversification of species through sensory drive. The recent growth in the field has been accompanied by leaps in our understanding of the diversity of visual systems and in the development of novel technologies and techniques (for example, those allowing us to measure scenes and signals). With such growth, however, it is more important than ever to integrate wide perspectives and expertise to move the field forward in the most productive way. To that end, in summer 2024, 30 visual ecologists from around the world – spanning all career stages – met to discuss the state of the field. From that meeting, we identified two broad emerging themes in the study of visual ecology. (1) Can we further ‘step inside’ the perceptual experience of a non-human animal? (2) Can foundational ‘rules’ of vision and visual stimuli be identified? Although large questions such as these can feel unanswerable, this is where some of the most exciting discoveries in visual ecology remain to be made. Here, we outline eight relevant areas of research and identify ways in which researchers can bring us closer to answering these complex questions.
more »
« less
- Award ID(s):
- 2029538
- PAR ID:
- 10657508
- Publisher / Repository:
- Journal of Experimental Biology
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 228
- Issue:
- 15
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary A recent study by Sugiura and coworkers reported the non‐symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus,Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.more » « less
-
Abstract Bacteria and ectomycorrhizal fungi (EcMF) represent two of the most dominant plant root-associated microbial groups on Earth, and their interactions continue to gain recognition as significant factors that shape forest health and resilience. Yet, we currently lack a focused review that explains the state of bacteria-EcMF interaction research in the context of experimental approaches and technological advancements. To these ends, we illustrate the utility of studying bacteria-EcMF interactions, detail outstanding questions, outline research priorities in the field, and provide a suite of approaches that can be used to promote experimental reproducibility, field advancement, and collaboration. Though this review centers on the ecology of bacteria, EcMF, and trees, it by default offers experimental and conceptual insights that can be adapted to various subfields of microbiology and microbial ecology.more » « less
-
Abstract Climate change is a critical environmental issue and is a recommended core concept in the Ecological Society of America’s 4‐Dimensional Ecology Education framework. Limited work describes K‐12 students’ conceptions of the biotic impacts of climate change, yet research is lacking to explore undergraduate students’ conceptions on this topic. Our goal was to describe undergraduate student conceptions of the biotic outcomes of climate change, and characterize how these student conceptions of animal responses to climate change align with accepted scientific ideas. We used an interpretive qualitative research design and interviewed 13 undergraduate students who were enrolled in either an introductory biology or general ecology course. Through two independent codings of the same dataset, we separately addressed each of our research goals. Prior to this study, we identified three general biotic outcomes from climate change, which were confirmed by outside experts: changes to an animal’s Growth and Survival, their Reproduction, or their Distribution. Our student interviewees as a whole mentioned all three of these outcomes, and most individuals mentioned all three in their responses. Additionally, we found that most student ideas were aligned with Scientific conceptions, while a third of student ideas contained some scientific conceptions but were incomplete. Only a small percent of conceptions voiced in our sample were identified as alternative conceptions that did not align with accepted scientific ideas. These findings are important for educators who teach climate change, as they suggest that undergraduate students come to our classes with productive resources; however, our findings also identify concepts where students may struggle or enter classrooms with a more incomplete understanding.more » « less
-
Abstract Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use‐inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill‐building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science.more » « less
An official website of the United States government
