skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 2, 2026

Title: Moderate-temperature solution-processed synthesis of incommensurate Sr8/7TiS3 thin films and rod-shaped nanocrystals
The chalcogenide perovskite family has been steadily gaining increasing attention from the research community due to its optoelectronic properties and potential for diverse applications. While BaZrS3 and BaTiS3 have been the most extensively studied, other promising compounds in this family, such as SrxTiS3 (1.05 < x < 1.22), are now being explored for various optical, optoelectronic, and energy storage applications. However, challenges remain in achieving the low-temperature synthesis of SrxTiS3. In this study, we report, for the first time, the synthesis of SrxTiS3 nanocrystals at temperatures below 400 °C. The synthesized nanocrystals exhibit a rod-like morphology. Additionally, we have developed solution-processing routes to synthesize phase-pure SrxTiS3 thin films, marking the first reported instance of such films, at temperatures below 600 °C. We also demonstrate the solid-state synthesis of SrxTiS3 powder below 600 °C. Our work paves the way for new and exciting application avenues for SrxTiS3.  more » « less
Award ID(s):
2422591
PAR ID:
10657611
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Journal of Materials Chemistry C
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
13
Issue:
38
ISSN:
2050-7526
Page Range / eLocation ID:
19699 to 19711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chalcogenide perovskites have recently attracted significant attention for renewable energy applications due to their predicted combination of air, moisture, and thermal stability, which has been experimentally validated, along with their excellent optoelectronic properties, which are still under experimental investigation. While historically requiring high synthesis temperatures, some solution-processed routes have recently emerged for synthesizing chalcogenide perovskites, such as BaZrS3 and BaHfS3, at temperatures below 600 °C. This study discusses several experimental challenges associated with the moderate-temperature synthesis of solution-deposited chalcogenide perovskites. Firstly, we identify Ruddlesden–Popper (RP) phases as thermodynamically stable competing secondary phases in perovskite synthesis. High sulfur pressures favor the formation of BaZrS3 or BaHfS3, whereas lower sulfur pressures result in a mixture of perovskite and RP phases. Additionally, we briefly discuss the mechanism of moderate-temperature synthesis of chalcogenide perovskites, including some of the morphological and optoelectronic challenges it presents, such as grain overgrowth, secondary phase contamination entrapment, and the presence of mid-band gap emissions. Finally, we address the importance of substrate selection and the potential presence of Ca- and Na-based impurities originating from cation out-diffusion from glass substrates. Addressing these challenges will be crucial as these unique materials continue to be investigated for applications in optoelectronic devices. 
    more » « less
  2. Chalcogenide perovskites have increasingly garnered attention in recent years for various optoelectronic applications. While distorted perovskites such as BaZrS3 are primarily being explored for photovoltaic applications, hexagonal ABS3 compounds such as BaTiS3 have been proposed for optical devices and thermoelectrics due to their intriguing properties arising from their quasi-1D structure, which imparts anisotropy in properties. However, other members of the hexagonal family remain largely unexplored, likely due to their harsh synthesis conditions. In this report, we synthesize nanocrystals of relatively unexplored members of the hexagonal ABX3 chalcogenides family, which also possess a similar rod-like morphology and could be useful for polarized photodetection applications. Specifically, we modified our previously reported sulfide perovskite nanoparticle synthesis route to produce BaNbS3 and BaTaS3 nanocrystals. Furthermore, we explored selenium and selenourea as precursors to synthesize selenide hexagonal nanocrystals such as BaTiSe3 and BaZrSe3, as well as other selenide analogues like Ba3Nb2Se9 and Ba3Ta2Se9. This marks the first report of nanocrystal synthesis for the BaMSe3 family, where M is an early transition metal. 
    more » « less
  3. Abstract Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3and BaHfS3chalcogenide perovskite films using single‐phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications. 
    more » « less
  4. Chalcogenide perovskites are promising semiconductor materials with attractive optoelectronic properties and appreciable stability, making them enticing candidates for photovoltaics and related electronic applications. Traditional synthesis methods for these materials have long suffered from high‐temperature requirements of 800–1000 °C. However, the recently developed solution processing route provides a way to circumvent this. By utilizing barium thiolate and ZrH2, this method is capable of synthesizing BaZrS3perovskite at modest temperatures (500–600 °C), generating crystalline domains on the order of hundreds of nanometers in size. Herein, a systematic study of this solution processing route is done to gain a mechanistic understanding of the process and to supplement the development of device quality fabrication methodologies. A barium polysulfide liquid flux is identified as playing a key role in the rapid synthesis of large‐grain BaZrS3perovskite at modest temperatures. Additionally, this mechanism is successfully extended to the related BaHfS3perovskite. The reported findings identify viable precursors, key temperature regimes, and reaction conditions that are likely to enable the large‐grain chalcogenide perovskite growth, essential toward the formation of device‐quality thin films. 
    more » « less
  5. III-Nitride materials such as gallium nitride (GaN) and indium nitride (InN) are critical for applications in electronics and optoelectronics due to their exceptional properties. However, their high-temperature stability is often limited by decomposition into constituent elements at low nitrogen pressures near or below ambient. This work investigates the use of nonequilibrium nitrogen plasma to stabilize GaN and InN at elevated temperatures and low pressures. Bulk nitride synthesis was demonstrated via plasma-assisted nitridation of Ga and In metals. Following synthesis, the suppression of nitride decomposition at temperatures exceeding the predicted equilibrium limits was accomplished by means of a nonequilibrium nitrogen plasma. Experimental results revealed that the nonequilibrium plasma imparted an additional chemical potential onto the ground state nitrogen by electron impact excitation, stabilizing GaN at 1000 °C and InN at 600 °C for nitrogen partial pressures as low as 10 Pa. With this experimental approach, the chemical potential of excited nitrogen species in the plasma was estimated to be 1.8 eV higher than the ground state value. These findings highlight the potential for plasma-based processing to enable scalable synthesis and stabilization of III-nitrides at high temperatures for advanced material applications. 
    more » « less