skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 15, 2026

Title: Quantum-Computable One-Way Functions without One-Way Functions
Award ID(s):
2145474
PAR ID:
10657825
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
189 to 200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial t(n) ≥ (1 + ε)n, ε > 0, the following are equivalent: • One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); • t-time bounded Kolmogorov Complexity, Kt, is mildly hard-on-average (i.e., there exists a polynomial p(n) > 0 such that no PPT algorithm can compute Kt, for more than a 1 − 1/p(n) fraction of n-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography. 
    more » « less