skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Process analysis of end-to-end continuous pharmaceutical manufacturing using PharmaPy
As pharmaceutical manufacturing is transitioning from traditional batch to continuous manufacturing (CM), there is a lack of tools for CM design and development, which can integrate drug substance and drug product unit operations for overall evaluation. Recently, a Python-based PharmaPy framework was proposed to advance the design, simulation, and analysis of continuous pharmaceutical processes. However, the initial library of models only addressed upstream drug substance processing. In this work, new capabilities, including drug product unit operations such as feeder, blender, and tablet press, have been added to the PharmaPy framework, enabling end-to-end study and optimizing the effects of material properties and process conditions on solid oral dosage products. The platform supports computational efficiency and model accuracy by allowing the development of different mechanistic and semi-mechanistic models. Sensitivity analysis is performed on the integrated end-to-end simulator to identify critical input variables influencing product quality and control strategies. The analysis lowers the complexity of the model by ranking significant input variables. Finally, feasibility studies are conducted on extracted influential input variables to characterize the process design space and achieve desirable output. The enhanced PharmaPy package can now support decision-making from early research and development stages through manufacturing.  more » « less
Award ID(s):
2140452
PAR ID:
10657879
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PSE Press
Date Published:
Page Range / eLocation ID:
2610 to 2615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects. 
    more » « less
  2. Kumar, Avvaru Praveen (Ed.)
    The pharmaceutical industry is looking for new and innovative ways of manufacturing to improve product quality and reduce process complexity. In manufacturing oral solid dosage products, blending is a crucial step in ensuring the homogeneity of active pharmaceutical ingredients (APIs) in the final product. Currently, batch and continuous blending are the two commonly used modes for blending in the industry. However, these methods have limitations in terms of blending time, manual intervention, and flexibility in handling multiple ingredients. To address these limitations, this study aims to explore the feasibility and benefits of using a semicontinuous blending mode in the pharmaceutical industry. A case study is conducted using a binary blend of microcrystalline cellulose and acetaminophen to compare the performance of the semicontinuous mode of blending with the batch and continuous blending modes. The results show that the semicontinuous blending setup can produce blends with good blend uniformity and homogeneity and that the output can be used for both batch and continuous downstream operations. The effect of variation in the three most important process parameters, impeller rotation per minute, blending time, and fill level on the blend uniformity, is also investigated. The semicontinuous blending mode had a higher line rate of 12.5 kg/hour than a similarly sized batch blender at 3.6 kg/hour and less than that of a continuous blender. The benefits of the new blending mode include reduced blending time, minimal manual intervention, flexibility in blending multiple ingredients, easier scale-up, and a smaller footprint. Overall, this study highlights the relative advantages of using this new semicontinuous blending mode in pharmaceutical manufacturing and its potential as a good alternative to the existing blending modes. The semicontinuous mode is well placed between the batch blending and continuous blending mode, with many benefits over the former mode and performance comparable to the latter continuous mode. 
    more » « less
  3. Continuous manufacturing in pharmaceutical industries has shown great promise to achieve process intensification. To better understand and justify such changes to the current status quo, a technoeconomic analysis of a continuous production must be conducted to serve as a predictive decision-making tool for manufacturers. This paper uses PharmaPy, a custom-made Python-based library developed for pharmaceutical flowsheet analysis, to simulate an annual production cycle for a given active pharmaceutical ingredient (API) of varying production volumes for a batch crystallization system and a continuous mixed suspension, mixed product removal (MSMPR) crystallizer. After each system is optimized, the generalized cost drivers, categorized as capital expenses (CAPEX) or operational expenses (OPEX), are compared. Then, a technoeconomic and sustainability cost analysis is done with the process mass intensity (PMI) as a green metric. The results indicate that while the batch system does have an overall lower cost and better PMI metric at smaller manufacturing scales in comparison with the continuous system, the latter system showed more potential for scaling-up for larger production volumes. 
    more » « less
  4. Implementing a condition-based maintenance strategy requires an effective condition monitoring (CM) system that can be complicated to develop and even harder to maintain. In this paper, we review the main complexities of developing condition monitoring systems and introduce a four-stage framework that can address some of these difficulties. The framework achieves this by first using process knowledge to create a representation of the process condition. This representation can be broken down into simpler modules, allowing existing monitoring systems to be mapped to their corresponding module. Data-driven models such as machine learning models could then be used to train the modules that do not have existing CM systems. Even though data-driven models tend to not perform well with limited data, which is commonly the case in the early stages of pharmaceutical process development, application of this framework to a pharmaceutical roller compaction unit shows that the machine learning models trained on the simpler modules can make accurate predictions with novel fault detection capabilities. This is attributed to the incorporation of process knowledge to distill the process signals to the most important ones vis-à-vis the faults under consideration. Furthermore, the framework allows the holistic integration of these modular CM systems, which further extend their individual capabilities by maintaining process visibility during sensor maintenance. 
    more » « less
  5. Abstract The pharmaceutical manufacturing sector needs to rapidly evolve to absorb the next wave of disruptive industrial innovations—Industry 4.0. This involves incorporating technologies like artificial intelligence and 3D printing (3DP) to automate and personalize the drug production processes. This study aims to build a formulation and process design (FPD) framework for a pharmaceutical 3DP platform that recommends operating (formulation and process) conditions at which consistent drop printing can be obtained. The platform used in this study is a displacement‐based drop‐on‐demand 3D printer that manufactures dosages by additively depositing the drug formulation as droplets on a substrate. The FPD framework is built in two parts: the first part involves building a machine learning model to simulate the forward problem—predicting printer operation for given operating conditions and the second part seeks to solve and experimentally validate the inverse problem—predicting operating conditions that can yield desired printer operation. 
    more » « less