skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2140452

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kokossis, A.; Georgiadis, M.C.; Pistikopoulos, E.N. (Ed.)
    A quantitative model can play an essential role in controlling critical quality attributes of products and in designing the associated processes. One of the challenges in designing a dry granulation process is to find the optimal balance between improving powder flowability and sacrificing powder tabletability, both of which are highly affected by ribbon solid fraction and granule size distribution (GSD). This study is focused on developing a hybrid machine learning (ML)-assisted mechanistic model to predict ribbon solid fraction, GSD, and throughput for the purpose of implementing model predictive control of an integrated continuous dry granulation tableting process. It is found that the predictability of ribbon solid fraction and throughput are improved when modification is made to Johanson’s model by incorporating relationships between roll compaction parameters and ribbon elastic recovery. Such relationships typically are either not considered or assumed to be a constant in the models reported in the literature. To describe the nature of the bimodal size distribution of roller compactor granules instead of only using traditional 𝐷𝐷10, 𝐷𝐷50 and 𝐷𝐷90 values, the GSD is represented by a bimodal Weibull distribution with five fitting parameters. Furthermore, these five GSD parameters are predicted by ML models. The results indicate the ribbon solid fraction and screen size are the two most significant factors affecting GSD. 
    more » « less