skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 25, 2026

Title: Emergence of bulk-like structural features and 2D-to-3D transition in boron nanoclusters
As an electron-deficient element, boron possesses fascinating three-dimensional structures and unconventional chemical bonds. Nanoclusters of boron have also been found to exhibit intriguing structural properties, observed to have predominantly planar structures, in stark contrast to bulk boron allotropes, which are composed of the ubiquitous B12icosahedral building blocks. Here, we report observation of the 2D-to-3D transition and bulk-like structural features in the size-selected boron clusters, as revealed by photoelectron spectroscopy, chemisorption experiments, and first-principles calculations. In the small to medium cluster size range, planar boron cluster anions are found to be unreactive and only B46and B56are observed to chemisorb C2H4and CO under ambient conditions, suggesting major structural transitions at these cluster sizes. Notably, B56is also found to be able to chemisorb and activate CO2. The global minimum of B46is found to adopt a core-shell structure (B2@B44), consisting of a B2core within a B44shell, reminiscent of the interstitial B2dumbbells in the high-pressureγ-B28form of bulk boron. More remarkably, both the global minimum and the second most stable isomer of B56exhibit nest-like configurations, featuring the iconic B12icosahedral core surrounded by a B44half-shell (B12@h-B44), signifying the onset of bulk-like structural characteristics in boron nanoclusters.  more » « less
Award ID(s):
2403841
PAR ID:
10657931
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
NAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
47
ISSN:
0027-8424
Page Range / eLocation ID:
e2510702122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes. 
    more » « less
  2. Abstract Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements. 
    more » « less
  3. Abstract The high strength of boron carbide (B4C) is essential in its engineering applications such as wear‐resistance and body armors. Here, by employing density functional theory simulations, we demonstrated that the strength of B4C can be enhanced by doping lithium to boron‐rich boron carbide (B13C2) to form r‐LiB13C2. The bonding analysis on r‐LiB13C2indicates that the electron counting rule (or Wade's rule) is satisfied in r‐LiB13C2whose formula can be written as r‐Li+(B12)2‐(CB+C). The shear deformation on r‐LiB13C2indicates that its ideal shear strength is larger than that of B4C because of the existing of Li dopant. The failure process of r‐LiB13C2under ideal shear deformation initiates from breaking the icosahedral‐icosahedral B‐B bonds. Then these B atoms react with the middle B in the C‐B‐C chain, resulting in the disintegration of icosahedral clusters and brittle failure. More interesting, the nanotwinned r‐LiB13C2is even stronger than r‐LiB13C2because of the directional nature of covalent bonding at the twin boundaries. This suggests that the nanotwinned r‐LiB13C2has a significant enhanced strength compared to B4C. Our simulation results illustrate the deformation mechanism of Li‐doped boron carbide and its nanotwinned microstructure. We proposed to improve the strength of boron carbide by doping Li into B13C2and increasing its twin densities. 
    more » « less
  4. Ultraviolet and visible integrated photonics enable applications in quantum information, sensing, and spectroscopy, among others. Few materials support low-loss photonics into the UV, and the relatively low refractive index of known depositable materials limits the achievable functionality. Here, we present a high-index integrated photonics platform based on HfO2and Al2O3composites deposited via atomic layer deposition (ALD) with low loss in the visible and near UV. We show that Al2O3incorporation dramatically decreases bulk loss compared to pure HfO2, consistent with inhibited crystallization due to the admixture of Al2O3. Composites exhibit refractive indexnfollowing the average of that of HfO2and Al2O3, weighted by the HfO2fractional compositionx. Atλ = 375 nm, composites withx = 0.67 exhibitn = 2.01, preserving most of HfO2’s significantly higher index, and 3.8(7) dB/cm material loss. We further present fully etched and cladded waveguides, grating couplers, and ring resonators, realizing a single-mode waveguide loss of 0.25(2) dB/cm inferred from resonators of 2.6 million intrinsic quality factor atλ = 729 nm, 2.6(2) dB/cm atλ = 405 nm, and 7.7(6) dB/cm atλ = 375 nm. We measure the composite’s thermo-optic coefficient (TOC) to be 2.44(3) × 10−5RIU/°C nearλ = 397 nm. This work establishes (HfO2)x(Al2O3)1−xcomposites as a platform amenable to integration for low-loss, high-index photonics spanning the UV to NIR. 
    more » « less
  5. We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory ofNf= 2 massless Dirac fermions carrying fundamental gauge charges—this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice withπ-flux per plaquette in the ℤ2center of SU(2). This theory has an emergent SO(5)fglobal symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsionUat half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving inπℤ2-flux. At half-filling, the low-energy theory of the Higgs sector hasNb= 2 relativistic bosons with a possible emergent SO(5)bglobal symmetry describing rotations between ad-wave superconductor, period-2 charge stripes, and the time-reversal breaking “d-density wave” state. We propose a conformal SU(2) gauge theory withNf= 2 fundamental fermions,Nb= 2 fundamental bosons, and a SO(5)f×SO(5)bglobal symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)fand a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order andd-wave superconductivity. A similar theory applies at nonzero doping and largeU, with longer-range couplings of the chargons leading to charge order with longer periods. 
    more » « less