Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs.
more »
« less
This content will become publicly available on November 7, 2026
Chemical Abundances of M and G Dwarfs in the Hyades and Coma Berenices Open Clusters from APOGEE Spectra
Open clusters are one of the best astrophysical laboratories we have available for stellar astrophysics studies. This work presents metallicities and individual abundances for 14 M dwarfs and six G dwarfs from two well-known open clusters: Hyades and Coma Berenices. Our analysis is based on near-infrared (1.51–1.69μm), high-resolution (R∼ 22,500) spectra obtained from the Sloan Digital Sky Survey (SDSS) IV/APOGEE Survey. Using one-dimensional, plane-parallel MARCS model atmospheres, the APOGEE line list, and the Turbospectrum radiative transfer code in local thermodynamic equilibrium, we derived spectroscopic stellar parameters for the M dwarfs, along with abundances of 13 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe) for both M and G dwarfs. We find a high degree of chemical homogeneity within each cluster when comparing abundances derived from M and G dwarfs:δ[M/H] (M dwarfs–G dwarfs) of 0.01 ± 0.04, and 0.02 ± 0.03 for the Hyades and Coma Berenices, respectively. The overall cluster metallicities derived from M dwarfs (Hyades: 0.16 ± 0.03 and Coma Berenices: 0.02 ± 0.06) are consistent with previous literature determinations. Finally, we demonstrate the value of M dwarfs as key tracers in Galactic archeology, emphasizing their potential for studying Galactic metallicity gradients and chemical evolution.
more »
« less
- Award ID(s):
- 2206543
- PAR ID:
- 10658019
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 993
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage.more » « less
-
ABSTRACT This paper presents chemical abundances of 12 elements (C, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe) for 80 FGK dwarfs in the Pleiades open cluster, which span a temperature range of $$\sim$$2000 K in T$$_{\rm eff}$$, using the high-resolution (R$$\sim$$22 500) near-infrared SDSS (Sloan Digital Sky Survey)-IV/APOGEE (Apache Point Observatory Galactic Evolution Experiment) spectra ($$\lambda$$1.51–1.69 $$\mu$$m). Using a 1D local thermodynamic equilibrium abundance analysis, we determine an overall metallicity of [Fe/H] = +0.03 $$\pm$$ 0.04 dex, with the elemental ratios [$$\alpha$$/Fe] = +0.01 $$\pm$$ 0.05, [odd-z/Fe] = –0.04 $$\pm$$ 0.08, and [iron peak/Fe] = –0.02 $$\pm$$ 0.08. These abundances for the Pleiades are in line with the abundances of other open clusters at similar galactocentric distances as presented in the literature. Examination of the abundances derived from each individual spectral line revealed that several of the stronger lines displayed trends of decreasing abundance with decreasing $$T_{\rm eff}$$. The list of spectral lines that yield abundances that are independent of $$T_{\rm eff}$$ are presented and used for deriving the final abundances. An investigation into possible causes of the temperature-dependent abundances derived from the stronger lines suggests that the radiative codes and the APOGEE line list we employ may inadequately model van der Waals broadening, in particular in the cooler K dwarfs.more » « less
-
Abstract We have used the UKIRT Hemisphere Survey combined with the UKIDSS Galactic Cluster Survey, the UKIDSS Galactic Plane Survey, and the CatWISE2020 catalog to search for new substellar members of the nearest open cluster to the Sun, the Hyades. Eight new substellar Hyades candidate members were identified and observed with the Gemini/GNIRS near-infrared spectrograph. All eight objects are confirmed as brown dwarfs with spectral types ranging from L6 to T5, with two objects showing signs of spectral binarity and/or variability. A kinematic analysis demonstrates that all eight new discoveries likely belong to the Hyades cluster, with future radial velocity and parallax measurements needed to confirm their membership. CWISE J042356.23+130414.3, with a spectral type of T5, would be the coldest (Teff≈ 1100 K) and lowest-mass (M≈ 30MJup) free-floating member of the Hyades yet discovered. We further find that high-probability substellar Hyades members from this work and previous studies have redder near-infrared colors than field-age brown dwarfs, potentially due to lower surface gravities and supersolar metallicities.more » « less
-
ABSTRACT Previous results in the literature have found the young inner-disc open cluster NGC 6705 to be mildly α-enhanced. We examined this possibility via an independent chemical abundance analysis for 11 red-giant members of NGC 6705. The analysis is based on near-infrared APOGEE spectra and relies on LTE calculations using spherical model atmospheres and radiative transfer. We find a mean cluster metallicity of $$\rm [Fe/H] = +0.13 \pm 0.04$$, indicating that NGC 6705 is metal-rich, as may be expected for a young inner-disc cluster. The mean α-element abundance relative to iron is $$\rm \langle [\alpha /Fe]\rangle =-0.03 \pm 0.05$$, which is not at odds with expectations from general Galactic abundance trends. NGC 6705 also provides important probes for studying stellar mixing, given its turn-off mass of M ∼ 3.3 M⊙. Its red giants have low 12C abundances ([12C/Fe] = −0.16) and enhanced 14N abundances ([14N/Fe] = +0.51), which are key signatures of the first dredge-up on the red giant branch. An additional signature of dredge-up was found in the Na abundances, which are enhanced by [Na/Fe] = +0.29, with a very small non-LTE correction. The 16O and Al abundances are found to be near-solar. All of the derived mixing-sensitive abundances are in agreement with stellar models of approximately 3.3 M⊙ evolving along the red giant branch and onto the red clump. As found in young open clusters with similar metallicities, NGC 6705 exhibits a mild excess in the s-process element cerium with $$\rm [Ce/Fe] = +0.13\pm 0.07$$.more » « less
An official website of the United States government
