skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Probing Ion-Blocking Electrode Rigs for Ionic Conductivity in Hybrid Solid Polymer Electrolytes
Solid electrolytes are critical for structural batteries, combining energy storage with structural strength for applications like electric vehicles and aerospace. However, achieving high ionic conductivity remains challenging, compounded by a lack of standardized testing methodologies. This study examines the impact of experimental setups and data interpretation methods on the measured ionic conductivities of solid polymer electrolytes (SPEs). SPEs were prepared using a polymer-induced phase separation process, resulting in a bi-continuous microstructure for improved ionic transport. Eight experimental rigs were evaluated, including two- and four-electrode setups with materials like stainless steel, copper, and aluminum. Ionic conductivity was assessed using electrochemical impedance spectroscopy, with analysis methods comparing cross-sectional and surface-area-based approaches. Results showed that the four-electrode stainless steel setup yielded the highest ionic conductivity using the cross-sectional method. However, surface-area-based methods provided more consistent results across rigs. Copper setups produced lower conductivities but exhibited less data variability, indicating their potential for reproducible measurements. These findings highlight the critical influence of experimental design on conductivity measurements and emphasize the need for standardized testing protocols. Advancing reliable characterization methods will support the development of high-performance solid electrolytes for multifunctional energy storage applications.  more » « less
Award ID(s):
2050956
PAR ID:
10658054
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOPScience
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
172
Issue:
2
ISSN:
0013-4651
Page Range / eLocation ID:
020523
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solid polymer electrolytes for lithium batteries promise improvements in safety and energy density if their conductivity can be increased. Nanostructured block‐copolymer electrolytes specifically have the potential to provide both good ionic conductivity and good mechanical properties. This study shows that the previously neglected nanoscale composition of the polymer electrolyte close to the electrode surface has an important effect on impedance measurements, despite its negligible extent compared to the bulk electrolyte. Using standard stainless steel blocking electrodes, the impedance of lithium salt‐doped poly(isoprene‐b‐styrene‐b‐ethylene oxide) (ISO) exhibits a marked decrease upon thermal processing of the electrolyte. In contrast, covering the electrode surface with a low molecular weight poly(ethylene oxide) (PEO) brush results in higher and more reproducible conductivity values, which are insensitive to the thermal history of the device. A qualitative model of this effect is based on the hypothesis that ISO surface reconstruction at the different electrode surfaces leads to a change in the electrostatic double layer, affecting electrochemical impedance spectroscopy measurements. As a main result, PEO‐brush modification of electrode surfaces is beneficial for the robust electrolyte performance of PEO‐containing block‐copolymers and may be crucial for their accurate characterization and use in Li‐ion batteries. 
    more » « less
  2. Because 3D batteries comprise solid polymer electrolytes (SPE) confined to high surface area porous scaffolds, the interplay between polymer confinement and interfacial interactions on total ionic conductivity must be understood. This paper investigates contributions to the structure-conductivity relationship in poly(ethylene oxide) (PEO)–lithium bis(trifluorosulfonylimide) (LiTFSI) complexes confined to microporous nickel scaffolds. For bulk and confined conditions, PEO crystallinity decreases as the salt concentration (Li+:EO (r) = 0.0.125, 0.0167, 0.025, 0.05) increases. For pure PEO and all r values except 0.05, PEO crystallinity under confinement is lower than in the bulk, whereas glass transition temperature remains statistically invariant. At 298 K (semicrystalline), total ionic conductivity under confinement is higher than in the bulk at r = 0.0167, but remains invariant at r = 0.05; however, at 350 K (amorphous), total ionic conductivity is higher than in the bulk for both salt concentrations. Time–of–flight secondary ion mass spectrometry indicates selective migration of ions towards the polymer–scaffold interface. In summary, for the 3D structure studied, polymer crystallinity, interfacial segregation, and tortuosity play an important role in determining total ionic conductivity and, ultimately, the emergence of 3D SPEs as energy storage materials. 
    more » « less
  3. The year 1975 can be claimed to be the year of inception for the research and development of solid polymer electrolytes (SPEs) for Lithium-Ion Batteries (LIB), when the ionic conductivity of polyethylene oxide–alkaline metal ion complex was found by Peter Wright from the University of Sheffield. However, SPE research has undergone a leapfrog development, with conductivity values improving from 1 × 10–7 S·cm−1 to 1 × 10– 1 S·cm−1. The seed of development of SPEs spurs from the need for introducing design freedom to battery structures as well as the need for leak-proof electrolytes, greater operational safety, higher energy density, and other considerations. While the benefits of SPEs are evident, poor interfacial contact is a major factor limiting their application. This review presents the history of SPEs and shows how the additive manufacturing (AM) could prove beneficial for the improvement of performance and the functional implementation of SPEs. While the article articulates a technical review of additively manufactured SPEs, it also provides a lab-to-market perspective that could aid in shaping the future of green technology in energy storage. It also aims to provide an overall picture about the evolution and diversity of research advances in the development of greener SPEs through AM technology. 
    more » « less
  4. Hybrid solid electrolytes are composed of organic (polymer) and inorganic (ceramic) ion conducting materials, and are promising options for large-scale production of solid state lithium–metal batteries. Hybrid solid electrolytes containing 15 vol% Al-LLZO demonstrate optimal ionic conductivity properties. Ionic conductivity is shown to decrease at high inorganic loadings. This optimum is most obvious above the melting temperature of polyethylene oxide where the polymer is amorphous. Structural analysis using synchrotron nanotomography reveals that the inorganic particles are highly aggregated. The aggregation size grows with inorganic content and the largest percolating clusters measured for 5 vol%, 15 vol% and 50 vol% were ∼12 μm 3 , 206 μm 3 , and 324 μm 3 , respectively. Enhanced transport in hybrid electrolytes is shown to be due to polymer|particle (Al-LLZO) interactions and ionic conductivity is directly related to the accessible surface area of the inorganic particles within the electrolyte. Ordered and well-dispersed structures are ideal for next generation hybrid solid electrolytes. 
    more » « less
  5. Structural supercapacitors, capable of bearing mechanical loads while storing electrical energy, hold great promise for enhancing mobile system efficiencies. However, developing practical structural supercapacitors often involves a challenging balance between mechanical and electrochemical performance, particularly in their electrolytes. Traditional research has focused on bi-continuous phase electrolytes (BPEs), which typically comprise high liquid content that weakens mechanical strength, and inert solid phases that hinder ion conduction and block electrode surfaces. Our previous work introduces a novel approach with a hydrated polymer electrolyte, demonstrating enhanced multifunctionality. This electrolyte, derived from controlled hydration of PET-LiClO4, forms a trihydrate (LiClO4∙3H2O) structure, where water molecules bond with ions without forming a liquid phase, thereby improving ion mobility while maintaining the base polymer's mechanical properties. This new design also promotes better electrochemical interfaces with electrodes, a significant advancement over traditional BPEs. In this study, we further enhance the performance and processability of such hydrated polymer electrolytes by incorporating polylactic acid (PLA) as the base polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. The electrolyte, prepared through solution casting and subsequent controlled hydration, consistently remains an amorphous solid solution in both dry and hydrated states, as confirmed by DSC, XRD, and FTIR analyses. Our tests on ionic conductivity and mechanical properties reveal that adding water to the polymer electrolyte substantially increases ionic conductivity while retaining mechanical properties. A specific composition demonstrated a remarkable increase in ionic conductivity coupled with superior toughness surpassing the base polymer. Furthermore, we successfully fabricated and tested structural supercapacitor devices made of composites of carbon fibers and these new electrolytes. The prototypes presented enhanced toughness with significant energy storage performance, demonstrating their vast application potential due to their outstanding multifunctionality. 
    more » « less