skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Eastman K., Gammons C.H., Beaucamp C.E, Thompson J.M., Lowers H. A. (2025) Trace and critical elements in UV-fluorescent and non-fluorescent sphalerite from the Butte porphyry-lode deposit, Montana, USA. Proceedings of the 18th SGA Biennial Meeting (Society for Geology Applied to Mineral Deposits), Golden CO, August, 2025, Vol. 2, p. 415-418.
Award ID(s):
2327676
PAR ID:
10658199
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the 18th SGA Biennial Meeting (Society for Geology Applied to Mineral Deposits)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. With many fundamental properties of motile active matter now reasonably well understood and under control, the ground is prepared for the study of physical aspects and mechanisms of motion in complex environments, of the behavior of systems with new physical features like chirality, of the development of novel micromachines and microbots, of the emergent collective behavior and swarming of intelligent self-propelled particles, and of particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2024 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area. 
    more » « less
  2. Abstract The aim of the UniProt Knowledgebase (UniProtKB; https://www.uniprot.org/) is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication, we describe ongoing changes to our production pipeline to limit the sequences available in UniProtKB to high-quality, non-redundant reference proteomes. We continue to manually curate the scientific literature to add the latest functional data and use machine learning techniques. We also encourage community curation to ensure key publications are not missed. We provide an update on the automatic annotation methods used by UniProtKB to predict information for unreviewed entries describing unstudied proteins. Finally, updates to the UniProt website are described, including a new tab linking protein to genomic information. In recognition of its value to the scientific community, the UniProt database has been awarded Global Core Biodata Resource status. 
    more » « less
  3. Hu, Qi (Ed.)
    Abstract Pielke deprecates both the ICAT database, which he once recommended, and U.S. tropical cyclone (TC) damage estimates from the National Centers for Environmental Information (NCEI). We do not share these views. Willoughby et al. (hereafter WL24) is based upon ICAT damage for 1900–2017, both then-year and normalized for inflation, population, and individual wealth, extended to 2022 with National Hurricane Center (NHC) official figures from NCEI. Pielke represents the data of Weinkle et al. (hereafter WK18) as a superior source. We find troubling anomalies in the WK18 data. The issue is that WK18 find that normalized TC damage is constant, but WL24 find that it is increasing. Here, we replicate the WL24 analysis with WK18 data and find a statistically significant growth of then-year damage relative to the U.S. economy, a statistically significant increase in the occurrence of the most damaging TCs, and a 0.6% per year increase in TC normalized damage. The last of these is not statistically significant because of the large variance due to the modulation of TC impacts by the Atlantic multidecadal oscillation. Thus, the increase in U.S. TC damage is sufficiently robust to survive the shortcomings of both datasets. 
    more » « less
  4. Abstract The transition from planar to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing. The roadmap comprises eighteen sections, roughly divided into three blocks. The first block explores the fundamentals of 3D nanomagnetism, focusing on recent trends in fabrication techniques and imaging methods crucial for understanding complex spin textures, curved surfaces, and small-scale interactions. Techniques such as two-photon lithography and focused electron beam-induced deposition enable the creation of intricate 3D architectures, while advanced imaging methods like electron holography and synchrotron x-ray tomography provide nanoscale spatial resolution for studying magnetization dynamics in three dimensions. Various 3D magnetic systems, including coupled multilayer systems, artificial spin-ice, magneto-plasmonic systems, topological spin textures, and molecular magnets are discussed. The second block introduces analytical and numerical methods for investigating 3D nanomagnetic structures and curvilinear systems, highlighting geometrically curved architectures, interconnected nanowire systems, and other complex geometries. Finite element methods are emphasized for capturing complex geometries, along with direct frequency domain solutions for addressing magnonic problems. The final block focuses on 3D magnonic crystals and networks, exploring their fundamental properties and potential applications in magnonic circuits, memory, and spintronics. Computational approaches using 3D nanomagnetic systems and complex topological textures in 3D spintronics are highlighted for their potential to enable faster and more energy-efficient computing. 
    more » « less