skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 15, 2026

Title: Elucidating the Role of Marine Benthic Carbon in a Changing World
The ocean plays a major role in controlling atmospheric carbon at decadal to millennial timescales, with benthic carbon representing the only geologic‐scale storage of oceanic carbon. Despite its importance, detailed benthic ocean observations are limited and representation of the benthic carbon cycle in ocean and Earth system models (ESMs) is mostly empirical with little prognostic capacity, which hinders our ability to properly understand the long‐term evolution of the carbon cycle and climate change‐related feedbacks. The Benthic Ecosystem and Carbon Synthesis (BECS) working group, with the support of the US Ocean Carbon & Biogeochemistry Program (OCB), identified key challenges limiting our understanding of benthic systems, opportunities to act on these challenges, and pathways to increase the representation of these systems in global modeling and observational efforts. We propose a set of priorities to advance mechanistic understanding and better quantify the importance of the benthos: (a) implementing a model intercomparison exercise with existing benthic models to support future model development, (b) data synthesis to inform both model parameterizations and future observations, (c) increased deployment of platforms and technologies in support of in situ benthic monitoring (e.g., from benchtop to field mesocosm), and (d) global coordination of a benthic observing program (“GEOSed”) to fill large regional data gaps and evaluate the mechanistic understanding of benthic processes acquired throughout the previous steps. Addressing these priorities will help inform solutions to both global and regional resource management and climate adaptation strategies.  more » « less
Award ID(s):
2445991
PAR ID:
10658485
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
AGU, Wiley
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
39
Issue:
12
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less
  2. Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments.The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less
  3. Abstract Measuring, reporting, and verification (MRV) of ocean-based carbon dioxide removal (CDR) presents challenges due to the dynamic nature of the ocean and the complex processes influencing marine carbonate chemistry. Given these challenges, finding the optimal sampling strategies and suite of parameters to be measured is a timely research question. While traditional carbonate parameters such as total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and seawater pCO2 are commonly considered, exploring the potential of carbon isotopes for quantifying additional CO2 uptake remains a relatively unexplored research avenue. In this study, we use a coupled physical-biogeochemical model of the California Current System (CCS) to run a suite of Ocean Alkalinity Enhancement (OAE) simulations. The physical circulation for the CCS is generated using a nested implementation of the Regional Ocean Modeling System (ROMS) with an outer domain of 1/10 ̊ (~10 km) and an inner domain of 1/30 ̊ (~3 km) resolution. The biogeochemical model, NEMUCSC, is a customized version of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) that includes carbon cycling and carbon isotopes. The CCS is one of four global eastern boundary upwelling systems characterized by high biological activity and CO2 concentrations. Consequently, the CCS represents an essential test case for investigating the efficacy and potential side effects of OAE deployments. The study aims to address two key questions: (1) the relative merit of OAE to counter ocean acidification versus the additional sequestration of CO2 from the atmosphere, and (2) the footprint of potentially harmful seawater chemistry adjacent to OAE deployments. We plan to leverage these high-resolution model results to competitively evaluate different MRV strategies, with a specific focus on analyzing the spatiotemporal distribution of carbon isotopic signatures following OAE. In this talk, we will showcase our initial results and discuss challenges in integrating high-resolution regional modeling into models of the global carbon cycle. More broadly, this work aims to provide insights into the plausibility of OAE as a climate solution that maintains ocean health and to inform accurate quantification of carbon uptake for MRV purposes. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1437343 
    more » « less
  4. Abstract Measuring, reporting, and verification (MRV) of ocean-based carbon dioxide removal (CDR) presents challenges due to the dynamic nature of the ocean and the complex processes influencing marine carbonate chemistry. Given these challenges, finding the optimal sampling strategies and suite of parameters to be measured is a timely research question. While traditional carbonate parameters such as total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and seawater pCO2 are commonly considered, exploring the potential of carbon isotopes for quantifying additional CO2 uptake remains a relatively unexplored research avenue. In this study, we use a coupled physical-biogeochemical model of the California Current System (CCS) to run a suite of Ocean Alkalinity Enhancement (OAE) simulations. The physical circulation for the CCS is generated using a nested implementation of the Regional Ocean Modeling System (ROMS) with an outer domain of 1/10 ̊ (~10 km) and an inner domain of 1/30 ̊ (~3 km) resolution. The biogeochemical model, NEMUCSC, is a customized version of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) that includes carbon cycling and carbon isotopes. The CCS is one of four global eastern boundary upwelling systems characterized by high biological activity and CO2 concentrations. Consequently, the CCS represents an essential test case for investigating the efficacy and potential side effects of OAE deployments. The study aims to address two key questions: (1) the relative merit of OAE to counter ocean acidification versus the additional sequestration of CO2 from the atmosphere, and (2) the footprint of potentially harmful seawater chemistry adjacent to OAE deployments. We plan to leverage these high-resolution model results to competitively evaluate different MRV strategies, with a specific focus on analyzing the spatiotemporal distribution of carbon isotopic signatures following OAE. In this talk, we will showcase our initial results and discuss challenges in integrating high-resolution regional modeling into models of the global carbon cycle. More broadly, this work aims to provide insights into the plausibility of OAE as a climate solution that maintains ocean health and to inform accurate quantification of carbon uptake for MRV purposes. https://agu.confex.com/agu/OSM24/prelim.cgi/Paper/1491096 
    more » « less
  5. Ocean biogeochemical models have become critical tools for interpreting trace element and isotope (TEI) distributions observed during the GEOTRACES program and understanding their driving processes. Models stimulate new research questions that cannot be addressed with observations alone, for instance, concerning processes that occur over vast spatial scales and linkages between TEIs and other elemental cycles. A spectrum of modeling approaches has been applied to date, including (1) fully prognostic models that couple TEIs to broader biogeochemical frameworks, (2) simpler element-specific mechanistic models that allow for assimilation of observations, and (3) machine learning models that have no mechanistic underpinning but allow for skillful extrapolation of sparse data. Here, we evaluate the strengths and weaknesses of these approaches and review three sets of novel insights they have facilitated. First, models have advanced our understanding of global-scale micronutrient distributions, and their deviations from macronutrients, in terms of a “ventilation-regeneration-scavenging” balance. Second, models have yielded global-scale estimates of TEI inputs to and losses from the ocean, revealing, for instance, a rapid iron (Fe) cycle with an oceanic residence time on the order of decades. Third, models have identified novel links among various TEI cycling processes and the global ocean carbon cycle, such as tracing the supply of hydrothermally sourced Fe to iron-starved microbial communities in the Southern Ocean. We foresee additional important roles for modeling work in the next stages of trace element research, including synthesizing understanding from the GEOTRACES program in the form of TEI state estimates, and projecting the responses of TEI cycles to global climate change. 
    more » « less