skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2027

Title: A Distributed Matrix-Block-Vector Multiplication in Presence of System Performance Variability
Distributed matrix-block-vector multiplication (Matvec) algorithm is a critical component of many applications, but can be computationally challenging for dense matrices of dimension \(O(10^6\text{--}10^7)\) and blocks of \(O(10\text{--}100)\) vectors. We present performance analysis, implementation, and optimization of our \pname{} library for Matvec under the effect of system variability. Our modeling shows that 1D pipelining Matvec is as efficient as 2D algorithms at small to medium clusters, which are sufficient for these problem sizes. We develop a performance tracing framework and a simulator that reveal pipeline bubbles caused by modest \textasciitilde{}5\% system variability. To tolerate such variability, our \pname{} library, which combines on-the-fly kernel matrix generation and Matvec, integrates four optimizations: inter-process data preloading, unconventional static thread scheduling, cache-aware tiling, and multi-version unrolling. In our benchmarks on \(O(10^5)\) Matvec problems, \pname{} achieves up to 1.85× speedup over COSMA and 17× over ScaLAPACK. For \(O(10^6)\) problems, where COSMA and ScaLAPACK exceed memory capacity, \pname{} maintains linear strong scaling and achieves peak performance of 75\%~FMA~Flop/s. Its static scheduling policy has a 2.27× speedup compared to the conventional work-stealing dynamic scheduler, and is predicted to withstand up to 108\% performance variability under exponential distributed variability simulation.  more » « less
Award ID(s):
2008557
PAR ID:
10658757
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the 31st ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming}{January 31 -- February 4, 2026
Date Published:
ISBN:
979-8-4007-2310-0
Format(s):
Medium: X
Location:
Sydney, NSW, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Constructing k-nearest neighbor (kNN) graphs is a fundamental component in many machine learning and scientific computing applications. Despite its prevalence, efficiently building all-nearest-neighbor graphs at scale on distributed heterogeneous HPC systems remains challenging, especially for large sparse non-integer datasets. We introduce optimizations for algorithms based on forests of random projection trees. Our novel GPU kernels for batched, within leaf, exact searches achieve 1.18× speedup over sparse reference kernels with less peak memory, and up to 19× speedup over CPU for memory-intensive problems. Our library,PyRKNN, implements distributed randomized projection forests for approximate kNN search. Optimizations to reduce and hide communication overhead allow us to achieve 5× speedup, in per iteration performance, relative to GOFMM (another projection tree, MPI-based kNN library), for a 64M 128d dataset on 1,024 processes. On a single-node we achieve speedup over FAISS-GPU for dense datasets and up to 10× speedup over CPU-only libraries.PyRKNNuniquely supports distributed memory kNN graph construction for both dense and sparse coordinates on CPU and GPU accelerators. 
    more » « less
  2. null (Ed.)
    Distributed model training suffers from communication bottlenecks due to frequent model updates transmitted across compute nodes. To alleviate these bottlenecks, practitioners use gradient compression techniques like sparsification, quantization, or low-rank updates. The techniques usually require choosing a static compression ratio, often requiring users to balance the trade-off between model accuracy and per-iteration speedup. In this work, we show that such performance degradation due to choosing a high compression ratio is not fundamental. An adaptive compression strategy can reduce communication while maintaining final test accuracy. Inspired by recent findings on critical learning regimes, in which small gradient errors can have irrecoverable impact on model performance, we propose Accordion a simple yet effective adaptive compression algorithm. While Accordion maintains a high enough compression rate on average, it avoids over-compressing gradients whenever in critical learning regimes, detected by a simple gradient-norm based criterion. Our extensive experimental study over a number of machine learning tasks in distributed environments indicates that Accordion, maintains similar model accuracy to uncompressed training, yet achieves up to 5.5x better compression and up to 4.1x end-to-end speedup over static approaches. We show that Accordion also works for adjusting the batch size, another popular strategy for alleviating communication bottlenecks. 
    more » « less
  3. Smola, A.; Dimakis, A.; Stoica, I. (Ed.)
    Distributed model training suffers from communication bottlenecks due to frequent model updates transmitted across compute nodes. To alleviate these bottlenecks, practitioners use gradient compression techniques like sparsification, quantization, low rank updates etc. The techniques usually require choosing a static compression ratio, often requiring users to balance the trade-off between model accuracy and per-iteration speedup. In this work, we show that such performance degradation due to choosing a high compression ratio is not fundamental and that an adaptive compression strategy can reduce communication while maintaining final test accuracy.Inspired by recent findings on critical learning regimes, in which small gradient errors can have irrecoverable impact on model performance, we propose ACCORDION a simple yet effective adaptive compression algorithm. While ACCORDION maintains a high enough compression rate on average, it avoids detrimental impact by not compressing gradients too much whenever in critical learning regimes, detected by a simple gradient-norm based criterion. Our extensive experimental study over a number of machine learning tasks in distributed environments indicates that ACCORDION, maintains similar model accuracy to uncompressed training, yet achieves up to 5.5×better compression and up to 4.1×end-to-end speedup over static approaches. We show that ACCORDION also works for adjusting the batch size, another popular strategy for alleviating communication bottlenecks. Our code is available at https://github.com/uw-mad-dash/Accordion 
    more » « less
  4. We present a framework for compiling recurrence equations into native code. In our framework, users specify a system of recurrences, the types of data structures that store inputs and outputs, and scheduling commands for optimization. Our compiler then lowers these specifications into native code that respects the dependencies in the recurrence equations. Our compiler can generate code over both sparse and dense data structures, and determines if the recurrence system is solvable with the provided scheduling primitives. We evaluate the performance and correctness of the generated code on several recurrences, from domains as diverse as dense and sparse matrix solvers, dynamic programming, graph problems, and sparse tensor algebra. We demonstrate that the generated code has competitive performance to hand-optimized implementations in libraries. However, these handwritten libraries target specific recurrences, specific data structures, and specific optimizations. Our system, on the other hand, automatically generates implementations from recurrences, data formats, and schedules, giving our system more generality than library approaches. 
    more » « less
  5. We consider large-scale implicit solvers for the numerical solution of partial differential equations (PDEs). The solvers require the high-bandwith networks of an HPC system for a fast time to solution. The increasing variability in performance of the HPC systems, most likely caused by variable communication latencies and network congestion, however, makes the execution time of solver algorithms unpredictable and hard to measure. In particular, the performance variability of the underlying system makes the reliable comparison of different algorithms and implementations difficult or impossible on HPC. We propose the use of statistical methods relying on hidden Markov models (HMM) to separate variable performance data into regimes corresponding to different levels of system latency. This allows us to, for ex- ample, identify and remove time periods when extremely high system latencies throttle application performance and distort performance measurements. We apply HMM to the careful analysis of implicit conjugate gradient solvers for finite-element discretized PDE, in particular comparing several new communication hiding methods for matrix-free operators of a PDE, which are critical for achieving peak performance in state-of-the-art PDE solvers. The HMM analysis allows us to overcome the strong performance variability in the HPC system. Our performance results for a model PDE problem discretized with 135 million degrees of freedom parallelized over 7168 cores of the Anvil supercomputer demonstrate that the communication hiding techniques can achieve up to a 10% speedup for the matrix-free matrix-vector product. 
    more » « less