Abstract Close encounters between neutron stars and main-sequence stars occur in globular clusters and may lead to various outcomes. Here we study encounters resulting in the tidal disruption of the star. Using N -body models, we predict the typical stellar masses in these disruptions and the dependence of the event rate on the host cluster properties. We find that tidal disruption events occur most frequently in core-collapsed globular clusters and that roughly 25% of the disrupted stars are merger products (i.e., blue straggler stars). Using hydrodynamic simulations, we model the tidal disruptions themselves (over timescales of days) to determine the mass bound to the neutron star and the properties of the accretion disks formed. In general, we find roughly 80%–90% of the initial stellar mass becomes bound to the neutron star following disruption. Additionally, we find that neutron stars receive impulsive kicks of up to about 20 km s −1 as a result of the asymmetry of unbound ejecta; these kicks place these neutron stars on elongated orbits within their host cluster, with apocenter distances well outside the cluster core. Finally, we model the evolution of the (hypercritical) accretion disks on longer timescales (days to years after disruption) to estimate the accretion rate onto the neutron stars and accompanying spin-up. As long as ≳1% of the bound mass accretes onto the neutron star, millisecond spin periods can be attained. We argue the growing numbers of isolated millisecond pulsars observed in globular clusters may have formed, at least in part, through this mechanism. In the case of significant mass growth, some of these neutron stars may collapse to form low-mass (≲3 M ⊙ ) black holes.
more »
« less
Can Slow Pulsars in Milky Way Globular Clusters Form via Partial Recycling?
Abstract Alongside the population of several hundred radio millisecond pulsars currently known in Milky Way globular clusters, a subset of six slowly spinning pulsars (spin periods 0.3–4 s) are also observed. With inferred magnetic fields ≳1011G and characteristic ages ≲108yr, explaining the formation of these apparently young pulsars in old stellar populations poses a major challenge. One popular explanation is that these objects are not actually young but instead have been partially spun up via accretion from a binary companion. In this scenario, accretion in a typical low-mass X-ray binary (LMXB) is interrupted by a dynamical encounter with a neighboring object in the cluster. Instead of complete spin-up to millisecond spin periods, the accretion is halted prematurely, leaving behind a “partially recycled” neutron star. In this Letter, we use a combination of analytic arguments motivated by LMXB evolution andN-body simulations to show that this partial recycling mechanism is not viable. Realistic globular clusters are not sufficiently dense to interrupt mass transfer on the short timescales required to achieve such slow spin periods. We argue that collapse of massive white dwarfs and/or neutron star collisions are more promising ways to form slow pulsars in old globular clusters.
more »
« less
- Award ID(s):
- 2108624
- PAR ID:
- 10658782
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 977
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Globular clusters (GCs) are particularly efficient at forming millisecond pulsars. Among these pulsars, about half lack a companion star, a significantly higher fraction than in the Galactic field. This fraction increases further in some of the densest GCs, especially those that have undergone core collapse, suggesting that dynamical interaction processes play a key role. For the first time, we createN-body models that reproduce the ratio of single-to-binary pulsars in Milky Way–like GCs. We focus especially on NGC 6752, a typical core-collapsed cluster with many observed millisecond pulsars. Previous studies suggested that an increased rate of neutron star binary disruption in the densest clusters could explain the overabundance of single pulsars in these systems. Here, we demonstrate that binary disruption is ineffective and instead we propose that two additional dynamical processes play dominant roles: (1) tidal disruption of main-sequence stars by neutron stars and (2) gravitational collapse of heavy white dwarf binary merger remnants. Neutron stars formed through these processes may also be associated with fast radio bursts similar to those observed recently in an extragalactic GC.more » « less
-
Abstract The globular cluster 47 Tucanae (47 Tuc) is one of the most massive star clusters in the Milky Way and is exceptionally rich in exotic stellar populations. For several decades it has been a favorite target of observers, and yet it is computationally very challenging to model because of its large number of stars (N≳ 106) and high density. Here we present detailed and self-consistent 47 Tuc models computed with theCluster Monte Carlocode (CMC). The models include all relevant dynamical interactions coupled to stellar and binary evolution, and reproduce various observations, including the surface brightness and velocity dispersion profiles, pulsar accelerations, and numbers of compact objects. We show that the present properties of 47 Tuc are best reproduced by adopting an initial stellar mass function that is both bottom-heavy and top-light relative to standard assumptions (as in, e.g., Kroupa 2001), and an initial Elson profile (Elson et al. 1987) that is overfilling the cluster’s tidal radius. We include new prescriptions inCMCfor the formation of binaries through giant star collisions and tidal captures, and we show that these mechanisms play a crucial role in the formation of neutron star binaries and millisecond pulsars in 47 Tuc; our best-fit model contains ∼50 millisecond pulsars, 70% of which are formed through giant collisions and tidal captures. Our models also suggest that 47 Tuc presently contains up to ∼200 stellar-mass black holes, ∼5 binary black holes, ∼15 low-mass X-ray binaries, and ∼300 cataclysmic variables.more » « less
-
Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106M⊙have escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M⊙, with spins set by the details of the growth history. BHs up to about 150M⊙can reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems.more » « less
-
Abstract Dynamical interactions in dense star clusters could significantly influence the properties of black holes, leaving imprints on their gravitational-wave signatures. While previous studies have mostly focused on repeated black hole mergers for spin and mass growth, this work examines the impact of physical collisions and close encounters between black holes and (noncompact) stars. Using Monte CarloN-body models of dense star clusters, we find that a large fraction of black holes retained upon formation undergo collisions with stars. Within our explored cluster models, the proportion of binary black hole mergers affected by stellar collisions ranges from 10%–60%. If all stellar-mass black holes are initially nonspinning, we find that up to 40% of merging binary black holes may have components with dimensionless spin parameterχ ≳ 0.2 because of prior stellar collisions, while typically about 10% have spins nearχ = 0.7 from prior black hole mergers. We demonstrate that young star clusters are especially important environments, as they can produce collisions of black holes with very massive stars, allowing for significant spin-up of the black holes through accretion. Our predictions for black hole spin distributions from these stellar collisions highlight their sensitivity to accretion efficiency, underscoring the need for detailed hydrodynamic calculations to better understand the accretion physics following these interactions.more » « less
An official website of the United States government

