This paper reports on the steps that happen after the release of strained microhooks from silicon substrates. The application is automated microassembly of electronic circuits using clips that grasp microscale (< 200 micron diameter) conductive fibers. We developed an integrated, photoresist-based thermal release structure that allows the first direct observations of the release process outside the etch chamber. High speed camera video (4200 frames/s) shows the cantilevers release in an order determined by thermal diffusion, with groups of ~1200 micron long cantilevers releasable at 100 Hz. Side-view video is analyzed to show that the height of the graspable region is approximately half the hook length.
more »
« less
This content will become publicly available on June 1, 2026
Thermally switchable tethers for rapid release of strained microstructures
Not AvailableThis paper reports on thermally switchable tethers that control the rapid release of strained microhooks from silicon substrates. Applications include automated microassembly of electronic circuits using clips that grasp microscale (<200 micron diameter) conductive fibers, as well as assembly of microdevices onto heat-sensitive materials by grasping. We developed an integrated, photoresist-based thermal release structure that allows the first direct observations of the release process outside the etch chamber. High speed camera video (4200 frames/s) shows the cantilevers release in an order determined by thermal diffusion, with groups of ~ 1200 micron long cantilevers releasable at 100 Hz. Side-view video is analyzed to show that the height of the graspable region is approximately half the hook length. The thermally isolated release method prevents the microhooks from heating, making it potentially useful for grasping heat-sensitive polymeric and biological materials.
more »
« less
- Award ID(s):
- 2309482
- PAR ID:
- 10658827
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Micro and Bio Robotics
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 2194-6418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As small spacecraft technologies develop, thermal management devices need to meet the growing demands of high-powered electronics. Currently being developed to meet this demand in CubeSats is the Additively Manufactured Deployable Radiator Oscillating Heat Pipes (AMDROHP). AMDROHP seeks to implement the high thermal conductivity and two-phase technology of Oscillating Heat Pipes into a unique deployable radiator design for a 3U CubeSat, taking advantage of additive manufacturing capabilities. While much consideration has been put into designing the AMDROHP on its own as a heat exchanger, there is also the need for it to be evaluated thermally at a system-level with the rest of the CubeSat while in orbit. In this study, thermal orbital spacecraft simulations, through the Thermal Desktop software, were performed to analyze how AMDROHP thermally integrates and interacts with the rest of the CubeSat and evaluate the survivability of temperature-sensitive components on the spacecraft. The simulations in this study included an 11th-orbit beta angle sweep for a tumbling orientation of the spacecraft in Low Earth Orbit (LEO). These simulations were performed with two AMDROHP devices in the CubeSat bus, each under a direct 25W heat input and performing with a thermal conductance of 6 W/K, which corresponds to the projected performance of the AMDROHP device while in operation. In this paper, the Thermal Desktop model of the AMDROHP CubeSat includes all major physical components, connections, heat loads, and thermal and optical materials. Then, steps are taken to improve the computational speed of the model. Furthermore, the means of addressing the modeling of the complex two-phase behavior of the OHP is outlined. Then, a number of test cases considering various operating conditions were simulated. From these simulations, orbital temperatures of sensitive components, primarily electronics, were collected and analyzed to find the minimum and maximum operating temperatures across all potential orbits. These temperatures were then evaluated to determine the component’s survivability in a worst-case scenario in orbit. From the results, it was found that, with the projected conductance of AMDROHP, all components operate under safe temperature conditions for any beta angle while in Low Earth Orbit. The evaporator is consistently the hottest component of the spacecraft and electronics boards all maintain survivable temperatures and are not at risk of over or underheating, even at worst case temperatures for all orbits tested. Based on the results and analysis of this conceptual study, it is suggested that AMDROHP will perform as an effective management device for small satellites.more » « less
-
Thermal metamaterials are gaining increasing popularity, especially for heat flux manipulation purposes. However, due to the high anisotropy of the structures resulting from the transformation thermotics or scattering cancellation methods, researchers are resorting to topology optimization as an alternative to find the optimal distribution of constituent bulk materials to realize a specific thermal function. This paper proposes to design a thermal cloak using the level-set-based shape and topology optimization. The thermal cloak design is considered in the context of pure heat conduction. The cloaking effect is achieved by reproducing the reference temperature field through the optimal distribution of two thermally conductive materials. The structural boundary is evolved by solving the Hamilton-Jacobi equation. The feasibility and validity of the proposed method to design thermal meta-devices with cloaking functionality are demonstrated through two numerical examples. The optimized structures have clear boundaries between constituent materials and do not exhibit thermal anisotropy, making it easier for physical realization. The first example deals with a circular cloaking region as a benchmark design. The robustness of the proposed method against various cloaking regions is illustrated by the second example concerning a human-shaped cloaking area. This work can inspire a broader exploration of the thermal meta-device in the heat flux manipulation regime.more » « less
-
Lattice materials provide unusual thermal and vibrational properties but not within the same structure. Thermal and vibrational multifunctionality is, however, crucial for thermomechanical applications such as automotive, aerospace, building, transportation, and energy infrastructure. In applications involving mobility, both high heat transfer and low mass are desired. Although there have been various efforts to design multifunctional lattice materials, the focus has largely remained on quasi‐static mechanical and thermal properties or mechanical and vibrational properties. Herein, designs of realizable lattice materials are reported, which are inherently thermally resistive, with vastly improved thermal conductance and omnidirectional phononic band gaps. By redesigning the truss structures to serve as interconnected heat pipes, a three‐order‐of‐magnitude improvement in the specific thermal conductance is found. Nodal masses at truss junctions are further used to obtain full vibrational band gaps. It is shown that it is possible to independently tune vibrational and thermal properties within the same structure. This work provides background for the design and fabrication of multifunctional lattice materials that simultaneously prevent structural vibrations and enhance heat conduction.more » « less
-
Thermally robust materials have been of interest since the middle of the past century for use as high temperature structural materials, lubricants, heat transfer fluids and other uses where thermal stability is necessary or desirable. More recently, ionic liquids have been described as ‘thermally robust,’ with this moniker often originating from their low volatility rather than their innate stability. As many ionic liquids have vanishingly low vapor pressures, the upper limit of their liquid state is commonly considered to be their degradation temperature, frequently reported from TGA measurements. The short duration ramps often used in TGA experiments can significantly overestimate the temperature at which significant degradation begins to occur when the compounds are held isothermal for even a few hours. Here, we review our recent work, and that of colleagues, in developing thermally robust ionic compounds, primarily perarylphosphonium and perarylsulfonium bistriflimide salts, in some of which cation stability exceeds that of the anion. We have used a combination of molecular design, synthesis, and computational modeling to understand the complex tradeoffs involving thermal stability, low melting point and other desirable physicochemical properties.more » « less
An official website of the United States government
