skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2026

Title: Local nutrient addition drives plant diversity losses but not biotic homogenization in global grasslands
Abstract Nutrient enrichment typically causes local plant diversity declines. A common but untested expectation is that nutrient enrichment also reduces variation in nutrient conditions among localities and selects for a smaller pool of species, causing greater diversity declines at larger than local scales and thus biotic homogenization. Here we apply a framework that links changes in species richness across scales to changes in the numbers of spatially restricted and widespread species for a standardized nutrient addition experiment across 72 grasslands on six continents. Overall, we find proportionally similar species loss at local and larger scales, suggesting similar declines of spatially restricted and widespread species, and no biotic homogenization after 4 years and up to 14 years of treatment. These patterns of diversity changes are generally consistent across species groups. Thus, nutrient enrichment poses threats to plant diversity, including for widespread species that are often critical for ecosystem functions.  more » « less
Award ID(s):
1831944
PAR ID:
10658983
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. 
    more » « less
  2. Abstract Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness. 
    more » « less
  3. Abstract The Arctic is warming four times faster than the global average1and plant communities are responding through shifts in species abundance, composition and distribution2–4. However, the direction and magnitude of local changes in plant diversity in the Arctic have not been quantified. Using a compilation of 42,234 records of 490 vascular plant species from 2,174 plots across the Arctic, here we quantified temporal changes in species richness and composition through repeat surveys between 1981 and 2022. We also identified the geographical, climatic and biotic drivers behind these changes. We found greater species richness at lower latitudes and warmer sites, but no indication that, on average, species richness had changed directionally over time. However, species turnover was widespread, with 59% of plots gaining and/or losing species. Proportions of species gains and losses were greater where temperatures had increased the most. Shrub expansion, particularly of erect shrubs, was associated with greater species losses and decreasing species richness. Despite changes in plant composition, Arctic plant communities did not become more similar to each other, suggesting no biotic homogenization so far. Overall, Arctic plant communities changed in richness and composition in different directions, with temperature and plant–plant interactions emerging as the main drivers of change. Our findings demonstrate how climate and biotic drivers can act in concert to alter plant composition, which could precede future biodiversity changes that are likely to affect ecosystem function, wildlife habitats and the livelihoods of Arctic peoples5,6
    more » « less
  4. Abstract Introduced species may homogenize biotic communities. Whether this homogenization can erase latitudinal patterns of species diversity and composition has not been well studied. We examined this by comparing nematode and microbial communities in stands of nativePhragmites australisand exoticSpartina alterniflorain coastal wetlands across 18° of latitude in China. We found clear latitudinal clines in nematode diversity and functional composition, and in microbial composition, for soils collected from nativeP. australis. These latitudinal patterns were weak or absent for soils collected from nearby stands of the exoticS. alterniflora. Climatic and edaphic variables varied across latitude in similar ways in both community types. InP. australisthere were strong correlations between community structure and environmental variables, whereas inS. alterniflorathese correlations were weak. These results suggest that the invasion ofS. alterniflorainto the Chinese coastal wetlands has caused profound biotic homogenization of soil communities across latitude. We speculate that the variation inP. australisnematode and microbial communities across latitude is primarily driven by geographic variation in plant traits, but that such variation in plant traits is largely lacking for the recently introduced exoticS. alterniflora. These results indicate that widespread exotic species can homogenize nematode communities at large spatial scales. 
    more » « less
  5. Abstract In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long‐term impact of nutrient enrichment on productivity. Here we use a long‐term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient. Overall, we found that nitrogen enrichment led to an immediate positive increment in productivity, but that this effect became nonsignificant over later years of the experiment, with the difference in productivity between fertilized and unfertilized plots decreasing in proportion to nitrogen addition‐dependent declines in soil pH and losses of plant diversity. The net effect of nitrogen enrichment on productivity could have been 14.5% more on average over 20 years in monocultures if not for nitrogen‐induced decreases in pH and about 28.5% more on average over 20 years in 16 species communities if not for nitrogen‐induced species richness losses. Together, these results suggest that the positive effects of nutrient enrichment on biomass production can diminish in their magnitude over time, especially because of soil acidification in low diversity communities and especially because of plant diversity loss in initially high diversity communities. 
    more » « less