Abstract Social isolation during development, especially in adolescence, has detrimental but incompletely understood effects on the brain. This study investigated the neural correlates of preference for solitude and social withdrawal in a sample of 2809 youth [median (IQR) age = 12.0 (1.1) years, 1440 (51.26%) females] from the Adolescent Brain Cognitive Development study. Older youth whose parents had mental health issues more frequently preferred solitude and/or were socially withdrawn (β = 0.04 to 0.14, CI = [0.002, 0.19], P < 0.05), both of which were associated with internalizing and externalizing behaviors, depression, and anxiety (β = 0.25 to 0.45, CI = [0.20, 0.49], P < 0.05). Youth who preferred solitude and/or were socially withdrawn had lower cortical thickness in regions involved in social function (cuneus, insula, anterior cingulate, and superior temporal gyri) and/or mental health (β = −0.09 to −0.02, CI = [−0.14, −0.003], P < 0.05), and higher amygdala, entorhinal cortex, parahippocampal gyrus, and basal ganglia volume (β = 2.62 to 668.10, CI = [0.13, 668.10], P < 0.05). Youth who often preferred solitude had more topologically segregated dorsal attention, temporoparietal, and social networks (β = 0.07 to 0.10, CI = [0.02, 0.14], P ≤ 0.03). Socially withdrawn youth had a less topologically robust and efficient (β = −0.05 to −0.80, CI = [−1.34,−0.01], P < 0.03) and more fragile cerebellum (β = 0.04, CI = [0.01, 0.07], P < 0.05). These findings suggest that social isolation in adolescence may be a risk factor for widespread alterations in brain regions supporting social function and mental health.
more »
« less
Social jet lag has detrimental effects on hallmark characteristics of adolescent brain structure, circuit organization, and intrinsic dynamics
Abstract Study ObjectivesTo investigate associations between social jet lag and the developing adolescent brain. MethodsN = 3507 youth (median (IQR) age = 12.0 (1.1) years; 50.9% females) from the Adolescent Brain Cognitive Development cohort were studied. Social jet lag (adjusted for sleep debt [SJLSC] vs. nonadjusted [SJL]), topological properties and intrinsic dynamics of resting-state networks, and morphometric brain characteristics were analyzed. ResultsOver 35% of participants had SJLSC ≥ 2.0 h. Boys, Hispanic and Black non-Hispanic youth, and/or those at later pubertal stages had longer SJLSC (β = 0.06–0.68, CI = [0.02, 0.83], p ≤ .02), which was also associated with higher Body Mass Index (BMI) (β = 0.13, CI = [0.08, 0.18], p < .01). SJLSC and SJL were associated with lower strength of thalamic connections (β = −0.22, CI = [−0.39, −0.05], p = .03). Longer SJLSC was also associated with lower topological resilience and lower connectivity of the salience network (β = −0.04, CI = [−0.08, −0.01], p = .04), and lower thickness and/or volume of structures overlapping with this and other networks supporting emotional and reward processing and social function (β =−0.08 to −0.05, CI = [−0.12, −0.01], p < .05). Longer SJL was associated with lower connectivity and efficiency of the dorsal attention network (β = −0.05, CI = [−0.10, −0.01], p < .05). Finally, SJLSC and SJL were associated with alterations in spontaneously coordinated brain activity and lower information transfer between regions supporting sensorimotor integration, social function, and emotion regulation (β = −0.07 to −0.05, CI = [−0.12, −0.01], p < .04). ConclusionsMisaligned sleep is associated with widespread alterations in adolescent brain structures, circuit organization, and dynamics of regions that play critical roles in cognitive (including social) function, and emotion and reward regulation.
more »
« less
- PAR ID:
- 10659005
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- SLEEPJ
- ISSN:
- 0161-8105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Seyedmirzaei, Homa (Ed.)The COVID-19 pandemic had profound effects on developing adolescents that, to date, remain incompletely understood. Youth with preexisting mental health problems and associated brain alterations were at increased risk for higher stress and poor mental health. This study investigated impacts of adolescent pre-pandemic mental health problems and their neural correlates on stress, negative emotions and poor mental health during the first 15 months of the COVID-19 pandemic. N = 2,641 adolescents (median age = 12.0 years) from the Adolescent Brain Cognitive Development (ABCD) cohort were studied, who had pre-pandemic data on anxiety, depression, and behavioral (attention, aggression, social withdrawal, internalizing, externalizing) problems, longitudinal survey data on mental health, stress and emotions during the first 15 months following the outbreak, structural MRI, and resting-state fMRI. Data were analyzed using mixed effects mediation and moderation models. Preexisting mental health and behavioral problems predicted higher stress, negative affect and negative emotions (β = 0.09–0.21, CI=[0.03,0.32]), and lower positive affect (β = −0.21 to −0.09, CI=[−0.31,-0.01]) during the first ~6 months of the outbreak. Pre-pandemic structural characteristics of brain regions supporting social function and emotional processing (insula, superior temporal gyrus, orbitofrontal cortex, and the cerebellum) mediated some of these relationships (β = 0.10–0.15, CI=[0.01,0.24]). The organization of pre-pandemic brain circuits moderated (attenuated) associations between preexisting mental health and pandemic stress and negative emotions (β = −0.17 to −0.06, CI=[−0.27,-0.01]). Preexisting mental health problems and their structural brain correlates were risk factors for youth stress and negative emotions during the early months of the outbreak. In addition, the organization of some brain circuits was protective and attenuated the effects of preexisting mental health issues on youth responses to the pandemic’s stressors.more » « less
-
Abstract The COVID-19 pandemic has had profound but incompletely understood adverse effects on youth. To elucidate the role of brain circuits in how adolescents responded to the pandemic’s stressors, we investigated their prepandemic organization as a predictor of mental/emotional health in the first ~15 months of the pandemic. We analyzed resting-state networks from n = 2,641 adolescents [median age (interquartile range) = 144.0 (13.0) months, 47.7% females] in the Adolescent Brain Cognitive Development study, and longitudinal assessments of mental health, stress, sadness, and positive affect, collected every 2 to 3 months from May 2020 to May 2021. Topological resilience and/or network strength predicted overall mental health, stress and sadness (but not positive affect), at multiple time points, but primarily in December 2020 and May 2021. Higher resilience of the salience network predicted better mental health in December 2020 (β = 0.19, 95% CI = [0.06, 0.31], P = 0.01). Lower connectivity of left salience, reward, limbic, and prefrontal cortex and its thalamic, striatal, amygdala connections, predicted higher stress (β = −0.46 to −0.20, CI = [−0.72, −0.07], P < 0.03). Lower bilateral robustness (higher fragility) and/or connectivity of these networks predicted higher sadness in December 2020 and May 2021 (β = −0.514 to −0.19, CI = [−0.81, −0.05], P < 0.04). These findings suggest that the organization of brain circuits may have played a critical role in adolescent stress and mental/emotional health during the pandemic.more » « less
-
ABSTRACT ObjectiveNeighborhood perceptions are associated with physical and mental health outcomes; however, the biological associates of this relationship remain to be fully understood. Here, we evaluate the relationship between neighborhood perceptions and amygdala activity and connectivity with salience network (i.e., insula, anterior cingulate, thalamus) nodes. MethodsForty-eight older adults (mean age = 68 [7] years, 52% female, 47% non-Hispanic Black, 2% Hispanic) without dementia or depression completed the Perceptions of Neighborhood Environment Scale. Lower scores indicated less favorable perceptions of aesthetic quality, walking environment, availability of healthy food, safety, violence (i.e., more perceived violence), social cohesion, and participation in activities with neighbors. Participants separately underwent resting-state functional magnetic resonance imaging. ResultsLess favorable perceived safety (β= −0.33,pFDR= .04) and participation in activities with neighbors (β= −0.35,pFDR= .02) were associated with higher left amygdala activity, independent of covariates including psychosocial factors. Less favorable safety perceptions were also associated with enhanced left amygdala functional connectivity with the bilateral insular cortices and the left anterior insula (β= −0.34,pFDR= .04). Less favorable perceived social cohesion was associated with enhanced left amygdala functional connectivity with the right thalamus (β =−0.42,pFDR= .04), and less favorable perceptions about healthy food availability were associated with enhanced left amygdala functional connectivity with the bilateral anterior insula (right:β= −0.39,pFDR= .04; left:β= −0.42,pFDR= .02) and anterior cingulate gyrus (β= −0.37,pFDR= .04). ConclusionsTaken together, our findings document relationships between select neighborhood perceptions and amygdala activity as well as connectivity with salience network nodes; if confirmed, targeted community-level interventions and existing community strengths may promote brain-behavior relationships.more » « less
-
Abstract Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic network topologies (focusing on the strongest connections and coordination patterns) and signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development (ABCD) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse associations between low-frequency signal and topological fluctuations were estimated (p < 0.05, β = −0.20 to −0.02, 95% confidence interval (CI) = [−0.23, −0.001]). Signal (but not topological) fluctuations increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, β = 0.06–0.07, 95% CI = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β = −0.09 to −0.03, 95% CI = [−0.15, −0.001]). Higher temporal signal and topological variability in spatially distributed regions were estimated in girls. In racial/ethnic minorities, several associations between signal and topological fluctuations were in the opposite direction of those in the entire sample, suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal dynamics change significantly in developed and developing brain regions, but their strongest coordination patterns may already be sufficiently developed and remain temporally consistent.more » « less
An official website of the United States government
