skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post-COVID-19 Student and Faculty Perceptions of Online Computing Labs: Better Targeted, Better Perceptions, but Still Need Improvement
In many disciplines, the growth of online courses was propelled by the COVID-19 pandemic, but this trend moderated as health concerns receded. Before the pandemic, computer science-related disciplines were less keen on online labs because of their inherently hands-on nature. This study presents a comparative analysis of student and faculty perceptions towards online labs in three computing-related disciplines a year after the pandemic. Through a survey with 242 students and 20 faculty responses, we found students were, overall, positive about their online lab experience—as were faculty. Students and instructors both agree that (1) where provided, online lab courses are being taught effectively, and (2) it is crucial to continue investing in technology infrastructure to enhance the quality and accessibility of both online and in-person labs. However, students and instructors disagree on two issues: (1) teamwork for lab activities and assignments (i.e., faculty tended to have a more optimistic view of online collaborative activities); and (2) modality for lab sessions (i.e., student preferences were evenly split between synchronous and asynchronous labs while faculty mostly preferred synchronous online labs). Faculty appear more optimistic about the effectiveness of online labs but show heightened concern regarding technological disruptions. Notably, all comments from students asserted the importance of having recorded demonstrations, even when a live synchronous demonstration may have been provided. Utilizing recordings and making them available is an example of a best practice worth promoting despite the added effort for faculty.  more » « less
Award ID(s):
2225206
PAR ID:
10659049
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Education sciences
ISSN:
1308-7274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic forced universities to shift their in-person lab courses to remote delivery, which presented several challenges for instructors and students. This article analyzed 33 peer-reviewed research articles to identify the various approaches taken by universities to migrate lab courses to remote platforms, as well as the difficulties encountered during the transition. The review revealed that technology and internet issues, workload constraints, academic integrity, and the overall educational experience were among the challenges faced. The authenticity and completeness of online labs were inferior to in-person labs, resulting in mixed opinions on the effectiveness of online labs. Students found labs that incorporated video recordings and simulations on a synchronous platform to be the most engaging. However, home labs provided limited hands-on experience, depending on the circumstances. Further research is required to investigate the cognitive, physical, and temporal demands posed by these technologies to develop a more compelling online lab experience. 
    more » « less
  2. The COVID-19 pandemic forced universities to shift their in-person lab courses to remote delivery, which presented several challenges for instructors and students. This article analyzed 33 peer-reviewed research articles to identify the various approaches taken by universities to migrate lab courses to remote platforms, as well as the difficulties encountered during the transition. The review revealed that technology and internet issues, workload constraints, academic integrity, and the overall educational experience were among the challenges faced. The authenticity and completeness of online labs were inferior to in-person labs, resulting in mixed opinions on the effectiveness of online labs. Students found labs that incorporated video recordings and simulations on a synchronous platform to be the most engaging. However, home labs provided limited hands-on experience, depending on the circumstances. Further research is required to investigate the cognitive, physical, and temporal demands posed by these technologies to develop a more compelling online lab experience. 
    more » « less
  3. The COVID-19 pandemic forced universities to suspend face-to-face instruction, prompting a rapid transition to online education. As many lab courses transitioned online, this provided a rare window of opportunity to learn about the challenges and affordances that the online lab experiences created for students and instructors. We present results from exploratory educational research that investigated student motivation and self-regulated learning in the online lab environment. We consider two student factors: motivation and self-regulation. The instrument is administered to students (n = 121) at the beginning of the semester and statistically analysed for comparisons between different demographic groups. The results indicated students' major was the only distinguishing factor for their motivation and self-regulation. Students' unfamiliarity with online labs or uncertainty about what to expect in the course contributed to the lower levels of self-regulation. The lack of significant differences between various subgroups was not surprising, as we posit many students entered the virtual lab environment with the same level of online lab experience. We conducted interviews among these respondents to explore the factors in greater detail. Using latent Dirichlet allocation, three main topics that emerged: (1) Learning Compatibility, (2) Questions and Inquiry, and (3) Planning and Coordination. 
    more » « less
  4. This is a Lessons-Learned paper. During the past years the Mechanical Engineering program at XXXX has made numerous curricular changes that focus on cultivating a culture of “engineering with engineers” and developing strong engineering identities in their students. The four major changes in the curriculum include implementing an integrated electrical engineering and data acquisition (DAQ) course sequence, adding a vertically integrated design projects (VIDP) course sequence, modifying an existing design sequence, and adding real engineering into existing courses. Many of these changes rely on hands-on labs and on creating connections between students and industry. In the spring of 2020, the pandemic forced the program to offer all of its courses online and challenged the department to rethink how it could continue its strong hands-on, industry-focused program. Most courses were quickly flipped and online class time via Zoom focused on community building and small group discussions. New checks and activities helped to keep students engaged and provided regular feedback to instructors on student progress. Lab assignments were modified so that all lab work could be done remotely. This paper details these changes, describes successes and failures, and discusses lessons learned. A summary of the paper will be presented as a lightning-talk during the 2021 ASEE Annual Conference. 
    more » « less
  5. Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student background in writing. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). Data collected via early-later lab reports show that student outcomes related to writing conventions were scored high regardless of the transfer modes. The largest variations among three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to high in later reports. This research results show that the area of writing knowledge that has been most influenced by their writing curricula prior to sophomore engineering lab courses is disciplinary meaning-making through presenting, analyzing, and interpreting lab data for the technical audience. 
    more » « less