The coconut shell consists of three distinct layers: the skin-like outermost exocarp, the thick fibrous mesocarp, and the hard and tough inner endocarp. In this work, we focused on the endocarp because it features a unique combination of superior properties, including low weight, high strength, high hardness, and high toughness. These properties are usually mutually exclusive in synthesized composites. The microstructures of the secondary cell wall of the endocarp at the nanoscale, in which cellulose microfibrils are surrounded by hemicellulose and lignin, were generated. All-atom molecular dynamics simulations with PCFF force field were conducted to investigate the deformation and failure mechanisms under uniaxial shear and tension. Steered molecular dynamics simulations were carried out to study the interaction between different types of polymer chains. The results demonstrated that cellulose–hemicellulose and cellulose–lignin exhibit the strongest and weakest interactions, respectively. This conclusion was further validated against the DFT calculations. Additionally, through shear simulations of sandwiched polymer models, it was found that cellulose–hemicellulose-cellulose exhibits the highest strength and toughness, while cellulose–lignin-cellulose shows the lowest strength and toughness among all tested cases. This conclusion was further confirmed by uniaxial tension simulations of sandwiched polymer models. It was revealed that hydrogen bonds formed between the polymer chains are responsible for the observed strengthening and toughening behaviors. Additionally, it was interesting to note that failure mode under tension varies with the density of amorphous polymers located between cellulose bundles. The failure mode of multilayer polymer models under tension was also investigated. The findings of this work could potentially provide guidelines for the design of coconut-inspired lightweight cellular materials.
more »
« less
This content will become publicly available on November 1, 2026
The isolation and characterization of cellulose nanofibrils from the endocarp of Cocos nucifera
Coconuts are one of nature’s toughest lignocellulosic materials, possessing a fracture toughness on par with dentin and a compressive strength ten times that of bamboo. The coconut’s hierarchical structure has been characterized before, except prior studies left out one key aspect, the smallest length scales, approaching the molecular level. Here we exfoliate the hard shell of Cocos nucifera, revealing the true cellular organization and the dimensions of the crystalline cellulose nanofibrils found in the cell walls. After chemical pretreatments, we found entanglement between elongated sclereid cells that was not visible in the untreated coconut shell. This may contribute to the mechanical performance of the endocarp; it also utilizes elongated, high-aspect ratio structural elements at the cellular level, in addition to the nanofibrillar level previously known. Compared to other wood-like materials, the cellulose nanofibrils were shorter and represented a smaller weight fraction. This reduced length and the lower filler-to-matrix ratio could be the optimal lignocellulosic nanostructure for tough biomaterials. These newly discovered unique features explain how the endocarp of Cocos nucifera mechanically outperforms materials consisting of the same molecular components.
more »
« less
- PAR ID:
- 10659058
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Wood Science and Technology
- Volume:
- 59
- Issue:
- 6
- ISSN:
- 0043-7719
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Lignocellulosic biomass holds a tremendous opportunity for transformation into carbon-negative materials, yet the expense of separating biomass into its cellulose and lignin components remains a primary economic barrier to biomass utilization. Herein is reported a simple procedure to convert several biomass-derived materials into robust, recyclable composites through their reaction with elemental sulfur by inverse vulcanization, a process in which olefins are crosslinked by sulfur chains. In an effort to understand the chemistry and the parameters leading to the strength of these composites, sulfur was reacted with four biomass-derivative comonomers: (1) unmodified peanut shell powder, (2) allyl peanut shells, (3) ‘mock’ allyl peanut shells (a mixture containing independently-prepared allyl cellulose and allyl lignin), or (4) peanut shells that have been defatted by extraction of peanut oil. The reactions of these materials with sulfur produce the biomass–sulfur composites PSx , APSx , mAPSx and dfPSx , respectively, where x = wt% sulfur in the monomer feed. The influence of biomass : sulfur ratio was assessed for PSx and APSx . Thermal/mechanical properties of composites were evaluated for comparison to commercial materials. Remarkably, unmodified peanut shell flour can simply be heated with elemental sulfur to produce composites having flexural/compressive strengths exceeding those of Portland cement, an effect traced to the presence of olefin-bearing peanut oil in the peanut shells. When allylated peanut shells are used in this process, a composite having twice the compressive strength of Portland cement is attained.more » « less
-
SUMMARY Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20‐1 to ES20‐9. Among these, endosidin20‐1 (ES20‐1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20‐1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20‐1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full‐length CESA6, we found that both ES20 and ES20‐1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20‐1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20‐1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20‐1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.more » « less
-
Abstract Strong and tough bio‐based fibers are attractive for both fundamental research and practical applications. In this work, strong and tough hierarchical core–shell fibers with cellulose nanofibrils (CNFs) in the core and regenerated silk fibroins (RSFs) in the shell are designed and prepared, mimicking natural spider silks. CNF/RSF core–shell fibers with precisely controlled morphology are continuously wet‐spun using a co‐axial microfluidic device. Highly‐dense non‐covalent interactions are introduced between negatively‐charged CNFs in the core and positively‐charged RSFs in the shell, diminishing the core/shell interface and forming an integral hierarchical fiber. Meanwhile, shearing by microfluidic channels and post‐stretching induce a better ordering of CNFs in the core and RSFs in the shell, while ordered CNFs and RSFs are more densely packed, thus facilitating the formation of non‐covalent interactions within the fiber matrix. Therefore, CNF/RSF core–shell fibers demonstrate excellent mechanical performances; especially after post‐stretching, their tensile strength, tensile strain, Young's modulus, and toughness are up to 635 MPa, 22.4%, 24.0 GPa, and 110 MJ m−3, respectively. In addition, their mechanical properties are barely compromised even at −40 and 60 °C. Static load and dynamic impact tests suggest that CNF/RSF core–shell fibers are strong and tough, making them suitable for advanced structural materials.more » « less
-
Abstract Cellulose nanomaterial (CNM) and polyethylenimine (PEI) composites have attracted growing attention due to their multifunctional characteristics, which have been applied in different fields. In this work, soybean hulls were valorized into carboxyl cellulose nanofibrils (COOH-CNFs), and composited into hydrogels with PEI by combining them with cationic chelating and physical adsorption strategies. Cellulose nanofibrils (CNFs) were produced from soybean hulls prior to oxidation by a TEMPO mediated reaction to obtain COOH–CNFs; then drops of zinc chloride were added to 1.5% aqueous COOH–CNF dispersions, which were left for 24 h to form COOH-CNF hydrogels. Finally, the hydrogels were functionalized using different concentration of PEI solutions over a range of pH values. Elemental analysis results showed that 20% aq. PEI at pH 11.6 is the optimum condition to synthesize the COOH–CNF/PEI hydrogels. Additionally, the adsorption efficiency for the removal of anionic methyl blue dyes and Cu(II) ions from water was tested, reaching 82.6% and 69.8%, respectively, after 24 h. These results demonstrate the great potential of COOH–CNF/PEI hydrogels as adsorbent materials for water remediation. Graphical abstractmore » « less
An official website of the United States government
