skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 15, 2026

Title: Extragalactic X-ray Binary IC 10 X-2 is in X-ray Outburst
The extragalactic high-mass X-ray binary IC 10 X-2 has been detected in X-ray outburst by Chandra on October 30, 2025. Follow-up observations are requested, specifically: (1) Visible-light spectroscopy to capture the H & alpha; line, which may show a broad or double-peaked structure revealing whether the mass donor has a circumstellar disk or other outflow.  more » « less
Award ID(s):
2109004
PAR ID:
10659184
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Astronomer's Telegram
Date Published:
Issue:
17471
Page Range / eLocation ID:
1
Subject(s) / Keyword(s):
Astronomy
Format(s):
Medium: X
Institution:
Astronomers Telegram
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultraluminous X-ray sources (ULXs) were once largely believed to be powered by super-Eddington accretion onto stellar-mass black holes, although in some rare cases, ULXs also serve as potential candidates for (sub-Eddington) intermediate-mass black holes. However, a total of eight ULXs have now been confirmed to be powered by neutron stars, thanks to observed pulsations, and may act as contaminants for the radio/X-ray selection of intermediate-mass black holes. Here, we present the first comprehensive radio study of seven known neutron star ULXs using new and archival data from the Karl G. Jansky Very Large Array and the Australia Telescope Compact Array, combined with the literature. Across this sample, there is only one confident radio detection, from the Galactic neutron star ULX Swift J0243.6+6124. The other six objects in our sample are extragalactic, and only one has coincident radio emission, which we conclude is most likely contamination from a background HII region. We conclude that with current facilities, neutron star ULXs do not produce significant enough radio emission to cause them to be misidentified as radio-/X-ray-selected intermediate-mass black hole candidates. Thus, if background star formation has been properly considered, the current study indicates that a ULX with a compact radio counterpart is not likely to be a neutron star. 
    more » « less
  2. This thesis presents a comprehensive investigation into the stellar populations and blue supergiant high-mass X-ray binaries (BSG-HMXBs) in the dwarf star-forming galaxy IC 10. The study is motivated by two primary objectives: firstly, to conduct a detailed analysis of the blue supergiant x-ray binary population in IC 10, and secondly, to explore the properties of IC 10 X-1, the brightest source in the galaxy, which is identified as a high mass x-ray binary containing a Wolf-Rayet and black hole. The dwarf galaxy in Cassiopeia, IC 10, located in “close” proximity of 660 kpc, captivates astronomers with its young stellar population, abundant Wolf-Rayet stars, and the presence of massive stars in general. Leveraging a series of space-based X-ray telescope (Chandra) observations, we have identified 375 X-ray point sources. Correlating our list of x-ray sources with published optical catalogs we found those having an optical counterpart. Applying an optical color-magnitude selection to isolate blue supergiant stars, we find the final list of intriguing blue supergiants in a compact-object(x-ray) binary. The ongoing starburst in IC 10 has given rise to a diverse collection of exotic compact-object binaries, including IC 10 X-1 (a Wolf-Rayet and Blackhole high mass x-ray binary) and IC 10 X-2 (a Blue supergiant fast x-ray transient). We have also used GEMINI/GMOS optical spectroscopy to enable multi-wavelength characterization of these BSG sources. Furthermore, our investigation into IC 10 X-1 reveals surprising findings regarding its X-ray emission and orbital dynamics. Through multi-wavelength analysis combining optical radial velocity (RV) curves and X-ray eclipse lightcurves, we uncover a quarter phase offset between these two observational features. IC 10 X-1 is a blackhole+Wolf-Rayet (BH+WR) high mass X-ray binary with an orbital period of 34.9 hrs. The BH mass is currently unconstrained, as the BH accretion disk irradiates the WR wind and alters the ionization structure of spectral line formation regions near the WR star. This alteration of the WR wind geometry masquerades as the classic binary RV curve. To understand the nature of this complex system, we perform a detailed multi-wavelength study using optical spectroscopy (GEMINI/GMOS), X-ray phase-resolved spectroscopy (Chandra), and x-ray lightcurve analysis (Chandra+Swift+XMM), aiming to elucidate the orbital period derivative and refine our understanding of the system’s binary parameters and physical nature. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. Identifying the nature of individual sources is a slow and difficult process, but ultimately necessary as it paves the way toward a comprehensive census of X-ray binaries (XRBs), enabling meaningful comparisons with other galaxies, for example, the Magellanic Clouds. 
    more » « less
  3. null (Ed.)
    ABSTRACT Shocks in γ-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV γ-ray emission to date. The nova is detected in hard X-rays while it is still γ-ray bright, but contrary to simple theoretical expectations, the detected 3.5–78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the γ-rays are likely hadronic. After correcting for substantial absorption (NH ≈ 2 × 1023 cm−2), the thermal X-ray luminosity (from a 9 keV optically thin plasma) is just ∼2 per cent of the γ-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the γ-ray producing shock are hidden behind an even larger absorbing column (NH > 1025 cm−2). Adding XMM–Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 d after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct supersoft phase in the X-ray light curve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova. 
    more » « less
  4. The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012 Mhalo/Me  1013, 10 r kpc−1  400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations. 
    more » « less
  5. Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations. 
    more » « less