Abstract The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (2–5), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of2–5. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.
more »
« less
This content will become publicly available on May 30, 2026
Supramolecular assembly of hypervalent iodine macrocycles and alkali metals
This study explores the solution- and solid-state assembly of phenylalanine-based hypervalent iodine macrocycles (HIMs) with lithium and sodium cations. The metal cation binding of HIMs was evaluated by addition of lithium tetrakis(pentafluorophenyl)borate ethyl etherate LiBArF20and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate NaBArF24. The electron-rich, outwardly projected carbonyl oxygens of the HIM co-crystalize with the cations into bent supramolecular architectures. Both crystal structures show a pattern of assembly between HIM and metal cation in 2:1 ratio. While association with sodium leads to a polymer-like network, the lithium crystal structure was limited to dimeric assemblies of HIM. In the lithium-coordinating complex, the oxygen–lithium–oxygen bond angle is approximately 98.83°, displaying a closer arrangement of two HIMs. In contrast, the sodium complex exhibits a more open orientation of two HIMs with an oxygen–sodium–oxygen bond angle close to 167.98°. Lastly, a comparative study of association constants and binding energies for phenylalanine-based HIM with LiBArF20and NaBArF24are presented.
more »
« less
- Award ID(s):
- 2003654
- PAR ID:
- 10659205
- Publisher / Repository:
- Beilstein-Institut zur Förderung der Chemischen Wissenschaften
- Date Published:
- Journal Name:
- Beilstein Journal of Organic Chemistry
- Volume:
- 21
- ISSN:
- 1860-5397
- Page Range / eLocation ID:
- 1095 to 1103
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The selective uptake of lithium ions is of great interest for chemists and engineers because of the numerous uses of this element for energy storage and other applications. However, increasing demand requires improved strategies for the extraction of this element from mixtures containing high concentrations of alkaline impurities. Here, we study solution phase interactions of lithium, sodium, and potassium cations with polyoxovanadate-alkoxide clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 3 H 7 , C 5 H 11 ), using square wave voltammetry and cyclic voltammetry. In all cases, the most reducing event of the cluster shifts anodically as the ionic radius of the cation decreases, indicating increased stability of the reduced cluster and further suggesting that these assemblies might be useful for the selective uptake of Li + . Exploring the consequence of ligand length, we found that the short-chain cluster, [V 6 O 7 (OCH 3 ) 12 ], irreversibly binds Li + in the presence of excess potassium (K + ) and exhibits an electrochemical response in titration experiments similar to that observed upon the addition of Li + to the POV–alkoxide in the presence of non-coordinating tetrabutylammonium ions. However, in the presence of excess sodium (Na + ), the cluster showed only a modest preference for lithium, with exchange between sodium and lithium ions governed by equilibrium. Extending these studies to [V 6 O 7 (OC 5 H 11 ) 12 ], we found that the presence of the pentyl ligands allows the assembly to irreversibly bind Li + in the presence of Na + or K + . The change in mechanism caused by surface functionalization of the clusters increases the differential binding affinity for more compact cations, translating to improved selectivity for Li + uptake in these molecular assemblies.more » « less
-
The solid-state structures of the Na + , Li + , and NH 4 + salts of the 4,5-dihydroxybenzene-1,3-disulfonate (tiron) dianion are reported, namely disodium 4,5-dihydroxybenzene-1,3-disulfonate, 2Na + ·C 6 H 4 O 8 S 2 2− , μ-4,5-dihydroxybenzene-1,3-disulfonato-bis[aqualithium(I)] hemihydrate, [Li 2 (C 6 H 4 O 8 S 2 )(H 2 O) 2 ]·0.5H 2 O, and diammonium 4,5-dihydroxybenzene-1,3-disulfonate monohydrate, 2NH 4 + ·C 6 H 4 O 8 S 2 2− ·H 2 O. Intermolecular interactions vary with the size of the cation, and the asymmetric unit cell, and the macromolecular features are also affected. The sodium in Na 2 (tiron) is coordinated in a distorted octahedral environment through the sulfonate oxygen and hydroxyl oxygen donors on tiron, as well as an interstitial water molecule. Lithium, with its smaller ionic radius, is coordinated in a distorted tetrahedral environment by sulfonic and phenolic O atoms, as well as water in Li 2 (tiron). The surrounding tiron anions coordinating to sodium or lithium in Na 2 (tiron) and Li 2 (tiron), respectively, result in a three-dimensional network held together by the coordinate bonds to the alkali metal cations. The formation of such a three-dimensional network for tiron salts is relatively rare and has not been observed with monovalent cations. Finally, (NH 4 ) 2 (tiron) exhibits extensive hydrogen-bonding arrays between NH 4 + and the surrounding tiron anions and interstitial water molecules. This series of structures may be valuable for understanding charge transfer in a putative solid-state fuel cell utilizing tiron.more » « less
-
Principles of Topological Constraint Theory (TCT) were applied to alkali borate and silicate glass systems using intermediate range structural models over wide compositional ranges. The structural model for lithium borate was derived from the Feller, Dell, and Bray model [1] and extended to the terminal composition at R = 3 where R is the molar ratio of lithium oxide to borate. The sodium borate structural model was built using both NMR [2] and Raman [3] data, and also included carbonate retention in the glass [4]. This model was extended to R = 3 similarly to the lithium borate system. The silicate system models were created from 29Si NMR data [5] and also incorporated carbonate retention where necessary [6]. Constraint models considered the effect of intermediate range structures on the system, and also incorporated the effect of “loose” alkali which is not directly associated with a non-bridging oxygen. Constraint models of the alkali borate, silicate, and borosilicate systems were then used to predict properties such as glass transition temperature and fragility.more » « less
-
The title complex, (1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether molecule and the two oxygen atoms of the oxalatotriphenylstannate anion. It crystallizes in the monoclinic crystal system within the space groupP21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming acis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H...O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending alonga-axis direction. The primary inter-chain interactions are van der Waals forces.more » « less
An official website of the United States government
