skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 29, 2026

Title: SILICON PHOTONIC DISSOLVED CO2 SENSING SYSTEM FOR PERFLUOROCARBON-BASED PERITONEAL OXYGENATION
This paper reports a silicon photonic dissolved CO2 sensing system, which, for the first time, allows monitoring of extra-pulmonary gas exchange during peritoneal oxygenation with perfluorocarbon (PFC). This work highlights the transition of the photonic sensor from controlled laboratory setups to an operating room by using a compact and cost-effective optical interrogator. In swine experiments, 4% CO2 dissolved in the PFC circulating in the animal’s peritoneal cavity is measured demonstrating the sensing system’s potential for real-world biomedical gas monitoring applications beyond just this one.  more » « less
Award ID(s):
2227939
PAR ID:
10659285
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
2025 23rd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. OBJECTIVES/GOALS: Patients suffering from respiratory failure have few options to support oxygenation and carbon dioxide removal aside from mechanical ventilation. Our objective was to test a novel extrapulmonary mechanism of gas exchange via peritoneal oxygenated perfluorocarbon (PFC) in a large animal model. METHODS/STUDY POPULATION: Using two 50 kg swine, hypoxia was modeled with subatmospheric oxygen and hypercarbia induced with acute hypoventilation. Through a midline laparotomy, cannulas were placed into the peritoneal space to allow for PFC infusion and circulation. After abdominal closure, these cannulas were connected to a device capable of draining, oxygenating, and infusing PFC. One animal was subjected to acute hypoxia (12% FiO2) and another animal to acute hypoventilation (4 breaths per minute). Primary outcomes were times for SpO2 to reach 75 mmHg, respectively. Trials were performed without PFC and with PFC dwelling or circulating through the peritoneal space, during which abdominal and bladder pressures were monitored and maintained under 20 mmHg by regulation of the PFC volume contained in the animal. RESULTS/ANTICIPATED RESULTS: In the animal subjected to acute hypoxia (12% FiO2), survival time improved from 5:55 to 20:00 (min:sec) after 2.5 liters of oxygenated PFC was instilled in the peritoneal space. Oxygen percent saturation of PFC before and after dwelling in the peritoneal space was measured at 100% before and 70% after dwelling in the animal during this hypoxic period corresponding with a gas transfer of 300 mL of oxygen over the 20-minute trial (i.e., 15 mL/min). Continual PFC circulation did not further extend the survival time during hypoxic conditions over PFC dwelling in the abdomen. In the animal that was acutely hypoventilated, there were no detectable differences in the rate of CO2 accumulation as measured by EtCO2 or direct blood pCO2 measurements with PFC dwelling or circulating through the peritoneal space. DISCUSSION/SIGNIFICANCE: Oxygenated PFC dwelling in the peritoneal space increased the duration of systemic arterial blood saturation remaining greater than 50% during normobaric hypoxic (12% FiO2) conditions but did not appreciably clear blood carbon dioxide during hypoventilation. Future experiments will focus on maximizing the rate of systemic oxygen uptake. 
    more » « less
  2. Abstract Circulation of perfluorocarbon (PFC) through corporeal cavities has received interest by virtue of its potential to supplement oxygenation via mechanical ventilation. However, the technology is not mature enough for clinical application, due to the knowledge gaps regarding the limiting factors hampering oxygen transport from PFC to blood. In this paper, we investigate a novel hypothesis that hypothermic peritoneal perfusion of cold oxygenated PFC may improve oxygenation of blood by facilitating the diffusion of oxygen from PFC to blood. Our hypothesis originates from physics-inspired insights that both hypothermia and PFC cooling may increase PFC-to-blood oxygen tension gradient: (i) hypothermia may decrease venous oxygen tension while (ii) cooling PFC may increase oxygen tension therein by increasing its oxygen solubility. Using a physics-based mathematical model capable of simulating oxygen tension responses to mechanical ventilation and peritoneal PFC perfusion under normothermic and hypothermic conditions, we analyzed the effect of hypothermic peritoneal cold PFC perfusion on blood oxygenation. The results predicted that peripheral oxygen saturation may be improved by 5%-10% by peritoneal perfusion of oxygenated 15°C PFC at 32°C body temperature compared with peritoneal perfusion of oxygenated 37.5°C PFC at 37.5°C body temperature. The results also predicted that cooling PFC may play a more meaningful role than hypothermia. Pending the investigation of adverse impact of hypothermia and cold PFC on homeostasis, hypothermic cold PFC perfusion may improve peritoneal oxygenation by facilitating diffusion. 
    more » « less
  3. OBJECTIVES/GOALS: For patients suffering from respiratory failure there are limited options to support gas exchange aside from mechanical ventilation. Our goal is to design, investigate, and refine a novel device for extrapulmonary gas exchange via peritoneal perfusion with perfluorocarbons (PFC) in an animal model. METHODS/STUDY POPULATION: Hypoxic respiratory failure will be modeled using 50 kg swine mechanically ventilated with subatmospheric (10-12%) oxygen. Through a midline laparotomy, two cannulas, one for inflow and one for outflow, will be placed into the peritoneal space. After abdominal closure, the cannulas will be connected to a device capable of draining, oxygenating, regulating temperature, filtering, and pumping perfluorodecalin at a rate of 3-4 liters per minute. During induced hypoxia, the physiologic response to PFC circulation through the peritoneal space will be monitored with invasive (e.g. arterial and venous blood gases) and non-invasive measurements (e.g. pulse oximetry). RESULTS/ANTICIPATED RESULTS: We anticipate that the initiation of oxygenated perfluorocarbons perfusion through the peritoneal space during induced hypoxia will create an increase in hemoglobin oxygen saturation and partial pressure of oxygen in arterial blood. As we expect gas exchange to be occurring in the microvascular beds of the peritoneal membrane, we expect to observe an increase in the venous blood oxygen content sampled from the inferior vena cava. Using other invasive hemodynamic measures (e.g. cardiac output) and blood samples taken from multiple venous sites, a quantifiable rate of oxygen delivery will be calculable. DISCUSSION/SIGNIFICANCE: Peritoneal perfluorocarbon perfusion, if able to deliver significant amounts of oxygen, would provide a potentially lifesaving therapy for patients in respiratory failure who are unable to be supported with mechanical ventilation alone, and are not candidates for extracorporeal membrane oxygenation. 
    more » « less
  4. Continuous greenhouse gas monitoring at sub-zero temperatures is needed for monitoring greenhouse gas emission in cold environments such as the Arctic tundra. This work reports a single-frequency electrochemical impedance sensing (SF-EIS) method for real-time continuous monitoring of carbon dioxide (CO2) at a wide range of temperatures (−15 to 40 °C) by using robust ionic liquid (IL) sensing materials and noninvasive, low-power, and low-cost impedance readout mechanisms since they cause minimal changes in the sensing interface, avoiding the baseline change for long-term continuous sensing. In addition, a miniaturized planar electrochemical sensor was fabricated that incorporates a hydrophobic 1-butyl-1-methylpyrrolidinium bis(trifluromethylsulfonyl)imide ([Bmpy][NTf2]) IL electrolyte and Pt black electrode materials. The high viscosity of the ILs facilitates the formation of thin, ordered, and concentrated layers of ionic charges, and the inverse relationship of IL viscosity with temperature makes them especially suited for impedance sensing at low temperatures. The unique low-temperature properties of ILs together with EIS transduction mechanisms are shown to be sensitive and selective for continuously monitoring CO2 at a −15 to 40 °C temperature range via impedance changes at a specifically selected frequency at the open circuit potential (OCP). Molecular dynamics simulations revealed insights into the structure and dynamics of the IL at varying temperatures in the presence of methane and CO2 and provided potential explanations for the observed sensing results. The miniaturized and flexible planar electrochemical sensor with the [Bmpy][NTf2] electrolyte was tested repeatedly at subzero temperatures over a 58-day period, during which good stability and repeatability were obtained. The CO2 impedance sensor was further tested for sensing CO2 from soil samples and shows promising results for their use in real-time monitoring of greenhouse gas emissions in cold temperatures such as permafrost soils. 
    more » « less
  5. Abstract Large-scale geo-sequestration of anthropogenic carbon dioxide (CO2) is one of the most promising methods to mitigate the effects of climate change without significant stress on the current energy infrastructure. However, the successful implementation of CO2 sequestration projects in suitable geological formations, such as deep saline aquifers and depleted hydrocarbon reservoirs, is contingent upon the optimal selection of decision parameters constrained by several key uncertainty parameters. This study performs an in-depth parametric analysis of different CO2 injection scenarios (water-alternating gas, continuous, intermittent) for aquifers with varying petrophysical properties. The petrophysical properties evaluated in this study include aquifer permeability, porosity, relative permeability, critical gas saturation, and others. Based on the extensive data collected from the literature, we generated a large set of simulated data for different operating conditions and geological settings, which is used to formulate a proxy model using different machine learning methods. The injection is run for 25 years with 275 years of post-injection monitoring. The results demonstrated the effectiveness of the machine learning models in predicting the CO2 trapping mechanism with a negligible prediction error while ensuring a low computational time. Each model demonstrated acceptable accuracy (R2 >0.93), with the XGBoost model showing the best accuracy with an R2 value of 0.999, 0.995, and 0.985 for predicting the dissolved, trapped, and mobile phase CO2. Finally, a feature importance analysis is conducted to understand the effect of different petrophysical properties on CO2 trapping mechanisms. The WAG process exhibited a higher CO2 dissolution than the continuous or intermittent CO2 injection process. The porosity and permeability are the most influential features for predicting the fate of the injected CO2. The results from this study show that the data-driven proxy models can be used as a computationally efficient alternative to optimize CO2 sequestration operations in deep saline aquifers effectively. 
    more » « less