Historically, hunter-gatherers living east and west of the Andean foothills of southern South America (Fuego-Patagonia) practiced different subsistence strategies. To the east, the wide open and relatively dry pampas presented a climate ideal for Terrestrial hunter-gatherers who depended on terrestrial animals (e.g., Lama guanicoe). In contrast, Marine hunter-gatherers who lived on islands in the western archipelago, a colder and wetter environment, mainly subsisted on marine resources (e.g., seals and shellfish). Archaeological evidence dates Terrestrial hunter-gatherers’ presence in Fuego-Patagonia to at least ~10,500 BP, whereas Marine hunter-gatherers’ presence dates to ~6,500 BP and is associated with highly specialized tools that have only been observed in the archaeological record after this time. Genetic analyses of some ancient Fuegian-Patagonians have supported the hypothesis that Marine hunter-gatherers migrated into the region after Terrestrial hunter-gatherers, around 6,500 BP (7,500 calBP), while analyses of other individuals suggest that Marine hunter-gatherers descended from the earlier Terrestrial hunter-gatherer groups. Here, we test these hypotheses by analyzing newly collected genome-wide data from n=46 ancient Chilean Fuegian-Patagonian individuals belonging to Marine, Terrestrial, and Mixed-economy archaeological sites dating to 6,895–304 calBP. We explored basic population structure among these hunter-gatherer groups using PCA and ADMIXTURE. We calculated π, pairwise-FST, and f-statistics, and developed demographic simulations to further examine genetic relationships among the groups. The results of this study shed light on local demographic patterns of ancient southern South American groups, which in turn provides more insight into broader population histories of South America. This study was funded by FONDECYT (Chile), National Geographic Society, National Science Foundation, and Wenner-Gren Foundation. C. M. Balentine is supported by an NSF Graduate Research Fellowship.
more »
« less
This content will become publicly available on April 1, 2026
A South American sebecid from the Miocene of Hispaniola documents the presence of apex predators in early West Indies ecosystems
The absence of terrestrial apex predators on oceanic islands led to the evolution of endemic secondary apex predators like birds, snakes and crocodiles, and loss of defence mechanisms among species. These patterns are well documented in modern and Quaternary terrestrial communities of the West Indies, suggesting that biodiversity there assembled similarly through overwater dispersal. Here, we describe fossils of a terrestrial apex predator, a sebecid crocodyliform with South American origins from the late Neogene of Hispaniola that challenge this scenario. These fossils, along with other putative sebecid specimens from Cuba and Puerto Rico, show that deep-time Caribbean ecosystems more closely resembled coeval localities in South America than those of today. We argue that Plio-Pleistocene extinction of apex predators in the West Indies resulted in mesopredator release and other evolutionary patterns traditionally observed on oceanic islands. Adaptations to a terrestrial lifestyle documented for sebecids and the chronology of West Indian fossils strongly suggest that they reached the islands in the Eocene–Oligocene through transient land connections with South America or island hopping. Furthermore, sebecids persisted in the West Indies for at least five million years after their extinction in South America, preserving the last populations of notosuchians yet recovered from the fossil record.
more »
« less
- Award ID(s):
- 2215184
- PAR ID:
- 10659316
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 292
- Issue:
- 2045
- ISSN:
- 1471-2954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Theropod dinosaurs were relatively scarce in the Late Cretaceous ecosystems of southeast Brazil. Instead, hypercarnivorous crocodyliforms known as baurusuchids were abundant and probably occupied the ecological role of apex predators. Baurusuchids exhibited a series of morphological adaptations hypothesized to be associated with this ecological role, but quantitative biomechanical analyses of their morphology have so far been lacking. Here, we employ a biomechanical modelling approach, applying finite element analysis (FEA) to models of the skull and mandibles of a baurusuchid specimen. This allows us to characterize the craniomandibular apparatus of baurusuchids, as well as to compare the functional morphology of the group with that of other archosaurian carnivores, such as theropods and crocodylians. Our results support the ecological role of baurusuchids as specialized apex predators in the continental Late Cretaceous ecosystems of South America. With a relatively weak bite force (~600 N), the predation strategies of baurusuchids likely relied on other morphological specializations, such as ziphodont dentition and strong cervical musculature. Comparative assessments of the stress distribution and magnitude of scaled models of other predators (the theropodAllosaurus fragilisand the living crocodylianAlligator mississippiensis) consistently show different responses to loadings under the same functional scenarios, suggesting distinct predatory behaviors for these animals. The unique selective pressures in the arid to semi‐arid Late Cretaceous ecosystems of southeast Brazil, which were dominated by crocodyliforms, possibly drove the emergence and evolution of the biomechanical features seen in baurusuchids, which are distinct from those previously reported for other predatory taxa.more » « less
-
Brinkhuis, Henk (Ed.)Searching for land refugia becomes imperative for human survival during the hypothetical sixth mass extinction. Studying past comparable crises can offer insights, but there is no fossil evidence of diverse megafloral ecosystems surviving the largest Phanerozoic biodiversity crisis. Here, we investigated palynomorphs, plant, and tetrapod fossils from the Permian-Triassic South Taodonggou Section in Xinjiang, China. Our fossil records, calibrated by a high-resolution age model, reveal the presence of vibrant regional gymnospermous forests and fern fields, while marine organisms experienced mass extinction. This refugial vegetation was crucial for nourishing the substantial influx of surviving animals, thereby establishing a diverse terrestrial ecosystem approximately 75,000 years after the mass extinction. Our findings contradict the widely held belief that restoring terrestrial ecosystem functional diversity to pre-extinction levels would take millions of years. Our research indicates that moderate hydrological fluctuations throughout the crisis sustained this refugium, likely making it one of the sources for the rapid radiation of terrestrial life in the early Mesozoic.more » « less
-
and frequently-occurring marine macrofossil groups of the past 100+ million years worldwide. From their apparent origin in central Tethys in the late Jurassic they spread across most of the world’s oceans by the Late Cretaceous. They suffered substantial extinction at the K-Pg but diversified quickly thereafter, and they were present on every continent during the Paleogene. The record of their diversity, abundance, and morphology during the Cenozoic has become clearer due to recent studies of body size, molecular phylogenetic analysis, and systematic treatments of Paleogene, Miocene, and Plio-Pleistocene fossils from the Western Atlantic region (southeastern North America, the Caribbean, Central America, and northern South America). A database (still a work in progress) of more than 230 described species from this region shows turritellid diversity of more than 20 species in the Paleocene, a low of fewer than 10 in the early Eocene, a peak of more than 80 in the Miocene, a decline to around 20 in the Pliocene, and a decline to only 4 species in the central Western Atlantic today. Diversity within single formations shows a slightly different pattern, with highs of 11–16 species in the Late Miocene of Colombia and 18 species in the Late Pliocene Pinecrest Sand of Florida. Overall abundance has also declined, with turritellid-dominated assemblages common across the region throughout the Cenozoic, but limited today to only small areas of northern Venezuela. Higher taxonomic assignments of fossil and Recent turritellids and their phylogenetic relationships are still poorly known (and are likely to remain so for many species), but recent molecular data and systematic work on fossil turritellids indicate that several clades (e.g., Torcula) persisted in the region throughout the Cenozoic, while other groups which became significant likely appeared in the Miocene, including Vermicularia and Caviturritella. A common pattern in all of this change is correlation with likely patterns of primary productivity. Hyperdiverse assemblages and high regional diversity of turritellids appear to occur at times and places of high productivity, frequently in association with upwelling or significant terrestrial runoff, and patterns of extinction (temporal and geographic) correlate with declines in productivity. Funding source: NSF DEB 2225014more » « less
-
Abstract Caldera lake sediments of the early Eocene Tufolitas Laguna del Hunco (Chubut Province, Argentina) host one of the world’s best-preserved and most diverse fossil plant assemblages, but the exceptional quality of preservation remains unexplained. The fossils have singular importance because they include numerous oldest and unique occurrences in South America of genera that today are restricted to the West Pacific region, where many of them are now vulnerable to extinction. Lacustrine depositional settings are often considered optimal for preservation as passive receptors of suspended sediment delivered, often seasonally, from lakeshores. However, caldera lakes can be influenced by a broader range of physical and chemical processes that enhance or decrease fossil preservation potential. Here, we use Laguna del Hunco to provide a new perspective on paleoenvironmental controls on plant fossil preservation in tectonically active settings. We establish a refined geochronological framework for the Laguna del Hunco deposits and present a detailed history of processes active during ∼ 200,000 years of lake filling from 52.217 ± 0.014 Ma to 51.988 ± 0.035 Ma, the time interval that encompasses nearly all fossil deposition. Detailed facies analysis shows that productive fossil localities reside within high-deposition-rate beds associated with high-energy density flows and wave-reworked lake-floor sediments, challenging traditional views that low-energy environments are required for well-preserved plant fossils. These results demonstrate that even delicate fossil components like fruits and flowers can survive high-energy transport, underscoring the importance of rapid burial as a primary control on fossil preservation. Short, steep sediment-transport networks may facilitate terrestrial fossil preservation by limiting opportunities for biochemical degradation on land and providing relatively frequent, high-energy depositional events, which quickly transport and bury organic material following events such as landslides from steep, wet, surrounding slopes. Our new model for plant taphonomy opens a path toward finding and understanding other exceptional biotas in environments once considered unlikely for preservation.more » « less
An official website of the United States government
