The Upper Jurassic Galice Formation, a metasedimentary unit in the Western Klamath Mountains, formed within an intra-arc basin prior to and during the Nevadan orogeny. New detrital zircon U-Pb age analyses (N = 11; n = 2792) yield maximum depositional ages (MDA) ranging from ca. 160 Ma to 151 Ma, which span Oxfordian to Kimmeridgian time and overlap Nevadan contractional deformation that began by ca. 157 Ma. Zircon ages indicate a significant North American continental provenance component that is consistent with tectonic models placing the Western Klamath terrane on the continental margin in Late Jurassic time. Hf isotopic analysis of Mesozoic detrital zircon (n = 603) from Galice samples reveals wide-ranging εHf values for Jurassic and Triassic grains, many of which cannot be explained by a proximal source in the Klamath Mountains, thus indicating a complex provenance. New U-Pb ages and Hf data from Jurassic plutons within the Klamath Mountains match some of the Galice Formation detrital zircon, but these data cannot account for the most non-radiogenic Jurassic detrital grains. In fact, the in situ Cordilleran arc record does not provide a clear match for the wide-ranging isotopic signature of Triassic and Jurassic grains. When compiled, Galice samples indicate sources in the Sierra Nevada pre-batholithic framework and retroarc region, older Klamath terranes, and possibly overlap strata from the Blue Mountains and the Insular superterrane. Detrital zircon age spectra from strata of the Upper Jurassic Great Valley Group and Mariposa Formation contain similar age modes, which suggests shared sediment sources. Inferred Galice provenance within the Klamath Mountains and more distal sources suggest that the Galice basin received siliciclastic turbidites fed by rivers that traversed the Klamath-Sierran arc from headwaters in the retroarc region. Thus, the Galice Formation contains a record of active Jurassic magmatism in the continental arc, with significant detrital input from continental sediment sources within and east of the active arc. These westward-flowing river systems remained active throughout the shift in Cordilleran arc tectonics from a transtensional system to the Nevadan contractional system, which is characterized by sediment sourced in uplifts within and east of the arc and the thrusting of older Galice sediments beneath older Klamath terranes to the east.
more »
« less
This content will become publicly available on November 1, 2026
Basement Domains Recorded in the Zircon Geochemistry of the Northern Sierra Nevada Batholith
Abstract The northern Sierra Nevada batholith was emplaced into and across a series of accreted crustal belts that vary considerably in their ages and lithologies. Unlike batholithic segments to the south, the northern Sierra comprises smaller, spatially distinct plutons where geologic relations with the host basement can be observed. Intermediate to felsic plutons were sampled as arc‐perpendicular transects at the latitude of Lake Tahoe and zircon Lu‐Hf and trace element analysis was performed in order to assess the relative impacts of temporal and spatial variability of arc magmatism on zircon geochemistry. Trends through time in the Hf data are complex, whereas there is an abrupt step from juvenile values in plutons intruding western belts (+12.3 to +14.4) to more evolved values in those intruding the Northern Sierra terrane to the east (−0.6 to +5.2). A similar pattern is observed in several zircon trace element signatures, including pronounced steps toward higher U/Yb, Dy/Yb and Ce/Y from the western belts into the Northern Sierra terrane to the east. The step is approximately coincident with the Feather River terrane, which is interpreted to mark the suture between the oceanic lithosphere to the west and the North American continental lithosphere to the east. The observed links between variation in zircon Lu‐Hf and trace element concentration and basement domain indicate that northern Sierran zircons incorporate, and are sensitive to, the crustal tracts into which they are emplaced. Preliminary application of our results to provenance analysis of Great Valley strata indicates changing provenance through time in the adjacent forearc.
more »
« less
- PAR ID:
- 10659484
- Publisher / Repository:
- Wiley Periodicals LLC on behalf of American Geophysical Union
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 11
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The spatial and temporal distribution of arc magmatism and associated isotopic variations provide insights into the Phanerozoic history of the western margin of South America during major shifts in Andean and pre-Andean plate interactions. We integrated detrital zircon U-Th-Pb and Hf isotopic results across continental magmatic arc systems of Chile and western Argentina (28°S–33°S) with igneous bedrock geochronologic and zircon Hf isotope results to define isotopic signatures linked to changes in continental margin processes. Key tectonic phases included: Paleozoic terrane accretion and Carboniferous subduction initiation during Gondwanide orogenesis, Permian–Triassic extensional collapse, Jurassic–Paleogene continental arc magmatism, and Neogene flat slab subduction during Andean shortening. The ~550 m.y. record of magmatic activity records spatial trends in magma composition associated with terrane boundaries. East of 69°W, radiogenic isotopic signatures indicate reworked continental lithosphere with enriched (evolved) εHf values and low (<0.65) zircon Th/U ratios during phases of early Paleozoic and Miocene shortening and lithospheric thickening. In contrast, the magmatic record west of 69°W displays depleted (juvenile) εHf values and high (>0.7) zircon Th/U values consistent with increased asthenospheric contributions during lithospheric thinning. Spatial constraints on Mesozoic to Cenozoic arc width provide a rough approximation of relative subduction angle, such that an increase in arc width reflects shallower slab dip. Comparisons among slab dip calculations with time-averaged εHf and Th/U zircon results exhibit a clear trend of decreasing (enriched) magma compositions with increasing arc width and decreasing slab dip. Collectively, these data sets demonstrate the influence of subduction angle on the position of upper-plate magmatism (including inboard arc advance and outboard arc retreat), changes in isotopic signatures, and overall composition of crustal and mantle material along the western edge of South America.more » « less
-
Abstract The Sanak-Baranof belt includes a series of near-trench plutons that intrude the outboard Chugach–Prince William terrane over ~2200 km along the southern Alaskan margin. We present new petrological, geochronological, and geochemical data for comagmatic microgranitoid enclaves and granitoid rocks from the Crawfish Inlet (ca. 53–47 Ma) and Krestof Island (ca. 52 Ma) plutons on Baranof and Krestof Islands, as well as the Mount Stamy (ca. 51 Ma) and Mount Draper (ca. 54–53 Ma) plutons and associated mafic rocks that intrude the Boundary block at Nunatak Fiord near Yakutat, Alaska, USA. These data suggest that intrusion of the Sanak-Baranof belt plutons is actually a tale of two distinct belts: a western belt with crystallization ages that young systematically from west to east (63–56 Ma) and an eastern belt with crystallization ages ranging from 55 to 47 Ma, but with no clear age progression along the margin. Hf isotope analyses of magmatic zircon from the western Sanak-Baranof belt become increasingly evolved toward the east with εHft = 9.3 ± 0.7 on Sanak Island versus εHft = 5.1 ± 0.5 for the Hive Island pluton in Resurrection Bay. The Hf isotope ratios of eastern Sanak-Baranof belt rocks also vary systematically with age but in reverse, with more evolved ratios in the oldest plutons (εHft = +4.7 ± 0.7) and more primitive ratios in the youngest plutons (εHft = +13.7 ± 0.7). We propose that these findings indicate distinct modes of origin and emplacement histories for the western and eastern segments of the Sanak-Baranof belt, and that the petrogenesis of eastern Sanak-Baranof belt plutons (emplaced subsequent to 57–55 Ma) was associated with an increasing mantle component supplied to the youngest eastern Sanak-Baranof belt magmas. These plutons reveal important information about offshore plate geometries and a dynamic period of plate reorganization ca. 57–55 Ma, but a clearer picture of the tectonic setting that facilitated these Sanak-Baranof belt intrusions cannot be resolved until the magnitude and significance of lateral translation of the Chugach–Prince William terrane are better understood.more » « less
-
The Sierra Nevada Batholith (SNB) records copious Mesozoic magmatism and is an important touchstone for understanding crustal growth at continental convergent margins. Recent research in the SNB has focused on defining magmatic cyclicity and arc “flare ups” based on the ages, magma production rates, and radiogenic isotope heterogeneities of the plutonic and volcanic rocks found throughout the batholith. Two main intervals at ca. 170–148 Ma and ca. 125–85 Ma delivered >95% of the magmas in the exposed plutonic bulk in the SNB and suggest elevated emplacement rates and hotter-than-usual magmas, though the Cretaceous is by far the most productive era and the most promising for understanding the factors modulating magmatic flux. The mid-Cretaceous of the Sierra (ca. 105–98 Ma) saw the appearance of conspicuous, high-silica (>65 wt.% SiO2; average ~71%) granitic plutons of similar chemical nature that span a large geographic area, breaking the well-established west-to-east “younging” trend found in the more common rocks of intermediate compositions. This study focuses on thirteen of these high-silica granites: the Bullfrog, Independence, McGann, Rawson Creek, and Spook Plutons of the eastern Sierra; and the Shaver Intrusive Suite, Grant Grove, Case Mountain, Coyote Pass, Dennison Peak, and Frys Point Plutons of the western/central Sierra. Whole rock geochemistry, zircon trace elements, and radiogenic isotope ratios (Sr and Nd) in these high-silica granites show some transitional patterns with other contemporaneous and geographically related plutons of intermediate compositions, suggesting fractionation trajectories; however, some distinct dissimilarities are observed, including: 1) elevated, but highly varied initial 87Sr/86Sr ratios, 2) elevated fluorine in granites, and 3) hotter apparent zircon saturation conditions. These geochemical data, hotter conditions, and higher flux suggest that mantle conditions favored more crustal melting and crustal source input than at any other time in the Cretaceous. We conclude that the granitic outburst of the mid-Cretaceous was a flare up like no other.more » « less
-
Determining the mechanisms by which the earliest continental crust was generated and reworked is important for constraining the evolution of Earth’s geodynamic, surface, and atmospheric conditions. However, the details of early plate tectonic settings often remain obscured by the intervening ~4 Ga of crustal recycling. Covariations of U, Nb, Sc, and Yb in zircon have been shown to faithfully reflect Phanerozoic whole-rock-based plate-tectonic discriminators and are therefore useful in distinguishing zircons crystallized in ridge, plume, and arc-like environments, both in the present and in deep time. However, application of these proxies to deciphering tectonic settings on the early Earth has thus far been limited to select portions of the detrital zircon record. Here, we present in situ trace-element and oxygen isotope compositions for magmatic zircons from crystalline crustal rocks of the Acasta Gneiss Complex and the Saglek-Hebron Complex, Canada. Integrated with information from whole-rock geochemistry and zircon U-Pb, Hf, and O isotopes, our zircon U-Nb-Sc-Yb results reveal that melting of hydrated basalt was not restricted to a single tectonomagmatic process during the Archean but was operative during the reworking of Hadean protocrust and the generation of juvenile crust within two cratons, as early as 3.9 Ga. We observe zircon trace-element compositions indicative of hydrous melting in settings that otherwise host seemingly differing whole-rock geochemistry, zircon Hf, and zircon O isotopes, suggesting contemporaneous operation of stagnant-lid (oceanic plateau) and mobile-lid (arc-like) regimes in the early Archean.more » « less
An official website of the United States government
