ABSTRACT We introduce a novel meta-analysis framework to combine dependent tests under a general setting, and utilize it to synthesize various microbiome association tests that are calculated from the same dataset. Our development builds upon the classical meta-analysis methods of aggregating P-values and also a more recent general method of combining confidence distributions, but makes generalizations to handle dependent tests. The proposed framework ensures rigorous statistical guarantees, and we provide a comprehensive study and compare it with various existing dependent combination methods. Notably, we demonstrate that the widely used Cauchy combination method for dependent tests, referred to as the vanilla Cauchy combination in this article, can be viewed as a special case within our framework. Moreover, the proposed framework provides a way to address the problem when the distributional assumptions underlying the vanilla Cauchy combination are violated. Our numerical results demonstrate that ignoring the dependence among the to-be-combined components may lead to a severe size distortion phenomenon. Compared to the existing P-value combination methods, including the vanilla Cauchy combination method and other methods, the proposed combination framework is flexible and can be adapted to handle the dependence accurately and utilizes the information efficiently to construct tests with accurate size and enhanced power. The development is applied to the microbiome association studies, where we aggregate information from multiple existing tests using the same dataset. The combined tests harness the strengths of each individual test across a wide range of alternative spaces, enabling more efficient and meaningful discoveries of vital microbiome associations.
more »
« less
This content will become publicly available on January 1, 2027
Accessing broader vinyl ether scope for sequential cationic-anionic block copolymers
The combination of multiple polymerization mechansisms in a single polymer chain allows for the synthesis of block copolymers with blocks of significantly different chemical structures. Previously, the combination of cationic...
more »
« less
- Award ID(s):
- 2011401
- PAR ID:
- 10659508
- Publisher / Repository:
- Royal Society of Chemistry (RSC)
- Date Published:
- Journal Name:
- Polymer Chemistry
- ISSN:
- 1759-9954
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Combining dependent $ p $-values poses a long-standing challenge in statistical inference, particularly when aggregating findings from multiple methods to enhance signal detection. Recently, $ p $-value combination tests based on regularly-varying-tailed distributions, such as the Cauchy combination test and harmonic mean $ p $-value, have attracted attention for their robustness to unknown dependence. This paper provides a theoretical and empirical evaluation of these methods under an asymptotic regime where the number of $ p $-values is fixed and the global test significance level approaches zero. We examine two types of dependence among the $ p $-values. First, when $ p $-values are pairwise asymptotically independent, such as with bivariate normal test statistics with no perfect correlation, we prove that these combination tests are asymptotically valid. However, they become equivalent to the Bonferroni test as the significance level tends to zero for both one-sided and two-sided $ p $-values. Empirical investigations suggest that this equivalence can emerge at moderately small significance levels. Second, under pairwise quasi-asymptotic dependence, such as with bivariate $ t $-distributed test statistics, our simulations suggest that these combination tests can remain valid and exhibit notable power gains over the Bonferroni test, even as the significance level diminishes. These findings highlight the potential advantages of these combination tests in scenarios where $ p $-values exhibit substantial dependence. Our simulations also examine how test performance depends on the support and tail heaviness of the underlying distributions.more » « less
-
In gradual typing, different languages perform different dynamic type checks for the same program even though the languages have the same static type system. This raises the question of whether, given a gradually typed language, the combination of the translation that injects checks in well-typed terms and the dynamic semantics that determines their behavior sufficiently enforce the static type system of the language. Neither type soundness, nor complete monitoring, nor any other meta-theoretic property of gradually typed languages to date provides a satisfying answer. In response, we present vigilance, a semantic analytical instrument that defines when the check-injecting translation and dynamic semantics of a gradually typed language are adequate for its static type system. Technically, vigilance asks if a given translation-and-semantics combination enforces the complete run-time typing history of a value, which consists of all of the types associated with the value. We show that the standard combination for so-called Natural gradual typing is vigilant for the standard simple type system, but the standard combination for Transient gradual typing is not. At the same time, the standard combination for Transient is vigilant for a tag type system but the standard combination for Natural is not. Hence, we clarify the comparative type-level reasoning power between the two most studied approaches to sound gradual typing. Furthermore, as an exercise that demonstrates how vigilance can guide design, we introduce and examine a new theoretical static gradual type system, dubbed truer, that is stronger than tag typing and more faithfully reflects the type-level reasoning power that the dynamic semantics of Transient gradual typing can guarantee.more » « less
-
Climate change and enhanced pollution levels are subjecting plants and crops to an increased number of different stressors, simultaneously or sequentially, generating conditions of multifactorial stress combination (MFSC). Although MFSC was shown to severely diminish plant growth, yield, and survival, how plants acclimate to increased levels of stress complexity is largely unknown. Here, we reveal that theArabidopsis thalianatranscriptional regulator basic helix-loop-helix 35 (bHLH35) is required for plant acclimation to a specific set of MFSC conditions that includes a combination of salinity, excess light, and heat, occurring simultaneously (but not to each of these stresses applied individually or in any other combination). Under the three-stress combination, bHLH35 interacts with no apical meristem/transcription activator factor/cup-shaped cotyledon 69 (NAC069), binds the promoter oflateral organ boundaries domain 31 (LBD31), and regulates the expression of transcripts involved in flavonoid metabolism and ethylene signaling. Our findings uncover a high degree of specificity in plant responses to stress combination, suggesting that different conditions of MFSC could require the function of specific genetic programs for acclimation.more » « less
-
Abstract Climate change is predicted to increase the frequency and intensity of abiotic stress combinations that negatively impact plants and pose a serious threat to crop yield and food supply. Plants respond to episodes of stress combination by activating specific physiological and molecular responses, as well as by adjusting different metabolic pathways, to mitigate the negative effects of the stress combination on plant growth, development, and reproduction. Plants synthesize a wide range of metabolites that regulate many aspects of plant growth and development, as well as plant responses to stress. Although metabolic responses to individual abiotic stresses have been studied extensively in different plant species, recent efforts have been directed at understanding metabolic responses that occur when different abiotic factors are combined. In this review we examine recent studies of metabolomic changes under stress combination in different plants and suggest new avenues for the development of stress combination-resilient crops based on metabolites as breeding targets.more » « less
An official website of the United States government
