skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Neighbourhood diversity increases tree growth in experimental forests more in wetter climates but not in wetter years
More Like this
  1. Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-N⋅y−1 to 585 Gg N2O-N⋅y−1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-N⋅y−1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals. 
    more » « less
  2. Abstract Current global warming scenarios suggest surface temperatures may attain warmth last seen during periods of the early‐to mid‐Pliocene (5.3–3 Ma). Pliocene proxy reconstructions suggest sea surface temperatures 3–9°C warmer than today along midlatitude coastal upwelling sites. Recent climate modeling efforts focused on the mid‐Piacenzian period showed a good model‐data fit over midlatitude upwelling regions, but did not attempt to reproduce proxy records of early‐Pliocene warmth. Evidence also suggests that subtropical continents were wetter then; we show that warm coastal SSTs can be explained via such wetter land conditions near the upwelling sites. Using a global atmospheric model, we show that introducing idealized wetter conditions over subtropical continents leads to reductions in upwelling‐favorable wind events by weakening the land‐sea surface pressure gradient. The resulting weaker coastal upwelling of cold deep water can help explain the inferred warm coastal temperatures. 
    more » « less
  3. Rivers originating in High Mountain Asia are crucial lifelines for one-third of the world’s population. These fragile headwaters are now experiencing amplified climate change, glacier melt, and permafrost thaw. Observational data from 28 headwater basins demonstrate substantial increases in both annual runoff and annual sediment fluxes across the past six decades. The increases are accelerating from the mid-1990s in response to a warmer and wetter climate. The total sediment flux from High Mountain Asia is projected to more than double by 2050 under an extreme climate change scenario. These findings have far-reaching implications for the region’s hydropower, food, and environmental security. 
    more » « less
  4. Abstract Many agricultural regions in China are likely to become appreciably wetter or drier as the global climate warming increases. However, the impact of these climate change patterns on the intensity of soil greenhouse gas (GHG) emissions (GHGI, GHG emissions per unit of crop yield) has not yet been rigorously assessed. By integrating an improved agricultural ecosystem model and a meta‐analysis of multiple field studies, we found that climate change is expected to cause a 20.0% crop yield loss, while stimulating soil GHG emissions by 12.2% between 2061 and 2090 in China's agricultural regions. A wetter‐warmer (WW) climate would adversely impact crop yield on an equal basis and lead to a 1.8‐fold‐ increase in GHG emissions relative to those in a drier‐warmer (DW) climate. Without water limitation/excess, extreme heat (an increase of more than 1.5°C in average temperature) during the growing season would amplify 15.7% more yield while simultaneously elevating GHG emissions by 42.5% compared to an increase of below 1.5°C. However, when coupled with extreme drought, it would aggravate crop yield loss by 61.8% without reducing the corresponding GHG emissions. Furthermore, the emission intensity in an extreme WW climate would increase by 22.6% compared to an extreme DW climate. Under this intense WW climate, the use of nitrogen fertilizer would lead to a 37.9% increase in soil GHG emissions without necessarily gaining a corresponding yield advantage compared to a DW climate. These findings suggest that the threat of a wetter‐warmer world to efforts to reduce GHG emissions intensity may be as great as or even greater than that of a drier‐warmer world. 
    more » « less