Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure.
more »
« less
This content will become publicly available on July 1, 2026
Snow refugia: Managing temperate forest canopies to maintain winter conditions
Climate change is reducing snowpack across temperate regions with negative consequences for human and natural systems. Because forest canopies create microclimates that preserve snowpack, managing forests to support snow refugia—defined here as areas that remain relatively buffered from contemporary climate change over time that sustain snow quality, quantity, and/or timing appropriate to the landscape—could reduce climate change impacts on snow cover, sustaining the benefits of snow. We review the current understanding of how forest canopies affect snow, finding that while closed‐conifer forests and snow interactions have been extensively studied in western North America, there are knowledge gaps for deciduous and mixed forests with dormant season leaf loss. We propose that there is an optimal, intermediate zone along a gradient of dormant season canopy cover (DSCC; the proportion of the ground area covered by the canopy during the dormant season), where peak snowpack depth and the potential for snow refugia will be greatest because the canopy‐mediated effects of snowpack sheltering (which can preserve snowpack) outweigh those of snowfall interception (which can limit snowpack). As an initial test of our hypothesis, we leveraged snowpack measurements in the northeastern United States spanning the DSCC gradient (low, <25% DSCC; medium, 25%–50% DSCC; and high, >50% DSCC), including from 2 sites in Old Town, Maine; 12 sites in Acadia National Park, Maine; and 30 sites in the northern White Mountains of New Hampshire. Medium DSCC forests (typically mature mixed coniferous–deciduous forests) exhibited the deepest peak snowpacks, likely due to reduced snowfall interception compared to high DSCC forests and reduced snowpack loss compared to low DSCC forests. Many snow accumulation or snowpack studies focus on the contrast between coniferous and open sites, but our results indicate a need for enhanced focus on mixed canopy sites that could serve as snow refugia. Measurements of snowpack depth and timing across a wider range of forest canopies would advance understanding of canopy–snow interactions, expand the monitoring of changing winters, and support management of forests and snow‐dependent species in the face of climate change.
more »
« less
- Award ID(s):
- 2224545
- PAR ID:
- 10659621
- Publisher / Repository:
- Wiley Periodicals LLC on behalf of The Ecological Society of America
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 7
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding how the presence of a forest canopy influences the underlying snowpack is critical to making accurate model predictions of bulk snow density and snow water equivalent (SWE). To investigate the relative importance of forest processes on snow density and SWE, we applied the SUMMA model at three sites representing diverse snow climates in Colorado (USA), Oregon (USA), and Alberta (Canada) for 5 years. First, control simulations were run for open and forest sites. Comparisons to observations showed the uncalibrated model with NLDAS‐2 forcing performed reasonably. Then, experiments were completed to isolate how forest processes affected modelled snowpack density and SWE, including: (1) mass reduction due to interception loss, (2) changes in the phase and amount of water delivered from the canopy to the underlying snow, (3) varying new snow density from reduced wind speed, and (4) modification of incoming longwave and shortwave radiation. Delivery effects (2) increased forest snowpack density relative to open areas, often more than 30%. Mass effects (1) and wind effects (3) decreased forest snowpack density, but generally by less than 6%. The radiation experiment (4) yielded negligible to positive effects (i.e., 0%–10%) on snowpack density. Delivery effects on density were greatest at the warmest times in the season and at the warmest site (Oregon): higher temperatures increased interception and melted intercepted snow, which then dripped to the underlying snowpack. In contrast, mass effects and radiation effects were shown to have the greatest impact on forest‐to‐open SWE differences, yielding differences greater than 30%. The study highlights the importance of delivery effects in models and the need for new types of observations to characterize how canopies influence the flux of water to the snow surface.more » « less
-
Abstract Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt.more » « less
-
Intermittent snow depth observations can be leveraged with data assimilation (DA) to improve model estimates of snow water equivalent (SWE) at the point scale. A key consideration for scaling a DA system to the basin scale is its performance at locations with forest cover – where canopy-snow interactions affect snow accumulation and melt, yet are difficult to model and parameterize. We implement a particle filter (PF) assimilation technique to assimilate intermittent depth observations into the Flexible Snow Model (FSM2), and validate the output against snow density and SWE measurements across paired forest and open sites, at two locations with different climates and forest structures. Assimilation reduces depth error by 70-90%, density error by 5-30%, and SWE error by 50-70% at forest locations (relative to control model runs) and brings errors in-line with adjacent open sites. The PF correctly simulates the seasonal evolution of the snowpack under forest canopy, including cases where interception lowers SWE in the forest during accumulation, and shading reduces melt during the ablation season (relative to open sites). The snow model outputs are sensitive to canopy-related parameters, but DA reduces the range in depth and SWE estimates resulting from spatial variations or uncertainties in these parameters by more than 50%. The results demonstrate that the challenge of accurately measuring, estimating, or calibrating canopy-related parameters is reduced when snow depth observations are assimilated to improve SWE estimates.</p>more » « less
-
Abstract The Sierra Nevada has experienced unprecedented wildfires and reduced snowmelt runoff in recent decades, due partially to anthropogenic climate change and over a century of fire suppression. To address these challenges, public land agencies are planning forest restoration treatments, which have the potential to both increase water availability and reduce the likelihood of uncontrollable wildfires. However, the impact of forest restoration on snowpack is site specific and not well understood across gradients of climate and topography. To improve our understanding of how forest restoration might impact snowpack across diverse conditions in the central Sierra Nevada, we run the high‐resolution (1 m) energy and mass balance Snow Physics and Lidar Mapping (SnowPALM) model across five 23–75 km2subdomains in the region where forest thinning is planned or recently completed. We conduct two virtual thinning experiments by removing all trees shorter than 10 or 20 m tall and rerunning SnowPALM to calculate the change in meltwater input. Our results indicate heterogeneous responses to thinning due to differences in climate and wind across our five central Sierra Nevada subdomains. We also predict the largest increases in snow retention when thinning forests with tall (7–20 m) and dense (40–70% canopy cover) trees, highlighting the importance of pre‐thinning vegetation structure. We develop a decision support tool using a random forests model to determine which regions would most benefit from thinning. In many locations, we expect major forest restoration to increase snow accumulation, while other areas with short and sparse canopies, as well as sunny and windy climates, are more likely to see decreased snowpack following thinning. Our decision support tool provides stand‐scale (30 m) information to land managers across the central Sierra Nevada region to best take advantage of climate and existing forest structure to obtain the greatest snowpack benefits from forest restoration.more » « less
An official website of the United States government
