skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2027

Title: Compressive-tensile yield asymmetry and aging-induced embrittlement in a selective laser melted 17-4 PH stainless steel
We studied the compressive-tensile yield asymmetry (CTYA) and its sensitivity to standard post-processing treatments for a 17-4 PH stainless steel processed with selective laser melting (SLM). Quasistatic tensile and compression tests at ambient temperatures reveal a consistent CTYA for all tested conditions, with compressive yield strengths exceeding tensile values. In the as-printed state, yield asymmetry (Δσ) is ∼113 MPa. Stress-relieving at 300 °C results in only a marginal decrease in asymmetry (Δσ ∼109 MPa), suggesting that the residual stresses generated during SLM have a negligible effect on the observed CTYA. Our analyses indicate that “dynamic softening” due to a stress-assisted austenite-to-martensite transformation governs the yield behavior similar to that observed in transformation-induced plasticity (TRIP)-assisted steels containing mechanically unstable retained austenite. This interpretation is further supported by the increased asymmetry, Δσ ∼127 MPa, observed in a solution-treated and aged specimen, which has a slightly higher retained austenite volume fraction (24 % vs. 21 %). Direct aging at 482 °C of the as-printed steel with a ferritic microstructure causes severe embrittlement. Brittle fracture occurs under tensile stresses well below the yield strength. This pronounced loss of ductility most likely arises from a strong <001> fiber texture along the build direction developed during SLM, which is known to promote cleavage-type fracture on {001} planes. A solution treatment at 1000 °C for 1 h, austenitizes the microstructure completely, and subsequent quenching produces a predominantly martensitic structure with a much weaker crystallographic texture, which restores a favorable strength-ductility balance after aging.  more » « less
Award ID(s):
2105362
PAR ID:
10659664
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Science and Engineering: A
Volume:
950
Issue:
C
ISSN:
0921-5093
Page Range / eLocation ID:
149537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades. 
    more » « less
  2. Maraging steels are known for their exceptional strength but suffer from limited work hardening and ductility. Here, we report an intermittent printing approach to tailor the microstructure and mechanical properties of maraging 250 steel via engineering of the thermal history during plasma arc additive manufacturing (PAAM). Through introducing a dwell time between adjacent layers, the maraging 250 steel is cooled below the martensite start temperature, triggering a thermally driven, in-situ martensitic transformation during the printing process. Re-heating or thermal cycling during subsequent layer deposition impedes complete martensitic transformation, enabling coexistence of martensite and retained austenite phases with elemental segregation. The enrichment of Ni in the austenite phase promotes stabilization of the retained austenite upon cooling down to room temperature. The retained austenite is yet metastable during deformation, leading to stress-induced martensitic transformation under loading. Specifically, a 3 min interlayer dwell time produces a maraging 250 steel with approximately 8% retained austenite, resulting in improved work hardening via martensitic transformation induced plasticity (TRIP) during deformation. Meanwhile, the higher cooling rate induced by the dwell time results in substantially refined grain structures with an increased dislocation density, leading to a simultaneously improved yield strength. Notably, the yield strength increases from 836 MPa (0 min dwell) to 990 MPa (3 min dwell), and the uniform elongation increases from 3.2% (0 min dwell) to 6.5% (3 min dwell). This intermittent deposition strategy demonstrates the potential to tune the microstructure and mechanical properties of maraging steels through engineering the thermal history during additive manufacturing. 
    more » « less
  3. This investigation systematically examines the influence of sintering temperature and aging treatment on the density, microstructure evolution, phase formation, and mechanical properties of a binder jet printed Co-Cr-Mo biomedical alloy. Sintering at 1380 °C for 2 h yielded a near-fully dense part (99.1%) with favorable mechanical properties (up to 325 HV0.1 hardness and up to 693 MPa ultimate tensile strength). The grain size remained unchanged after aging at 800 °C for 24 h (89 ± 21 µm). Aging resulted in increased microhardness and tensile strength due to phase formation (Cr23C6, CrMo, and ε phase), but a significant decrease in ductility. Consequently, the sintered and aged specimen exhibited higher hardness (522 HV0.1), yield strength (641 MPa), and ultimate tensile strength (854 MPa) compared to cast Co-Cr-Mo alloy. Biocompatibility testing with fibroblasts showed a cell viability of 95 ± 2%, indicating that binder jet printing did not affect the biocompatibility of the Co-Cr-Mo alloy. Exemplary printed parts including hip-joint, partial denture, and small-scale knee joint were successfully demonstrated. This study highlights the comparable properties of binder jet Co-Cr-Mo alloy to the cast alloy, affirming its potential for biomedical applications. 
    more » « less
  4. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less
  5. null (Ed.)
    The deformation behavior of the extruded magnesium alloys Mg2Nd and Mg2Yb was investigated at room temperature. By using in situ energy-dispersive synchrotron X-ray diffraction compression and tensile tests, accompanied by Elasto-Plastic Self-Consistent (EPSC) modeling, the differences in the active deformation systems were analyzed. Both alloying elements change and weaken the extrusion texture and form precipitates during extrusion and subsequent heat treatments relative to common Mg alloys. By varying the extrusion parameters and subsequent heat treatment, the strengths and ductility can be adjusted over a wide range while still maintaining a strength differential effect (SDE) of close to zero. Remarkably, the compressive and tensile yield strengths are similar and there is no mechanical anisotropy when comparing tensile and compressive deformation, which is desirable for industrial applications. Uncommon for Mg alloys, Mg2Nd shows a low tensile twinning activity during compression tests. We show that heat treatments promote the nucleation and growth of precipitates and increase the yield strengths isotopically up to 200 MPa. The anisotropy of the yield strength is reduced to a minimum and elongations to failure of about 0.2 are still achieved. At lower strengths, elongations to failure of up to 0.41 are reached. In the Mg2Yb alloy, adjusting the extrusion parameters enhances the rare-earth texture and reduces the grain size. Excessive deformation twinning is, however, observed, but despite this the SDE is still minimized. 
    more » « less