Abstract Microcystin poses a serious threat to aquatic ecosystems and human health. There is a pressing need to understand the production, movement, and storage of microcystin in lakes. We constructed a conceptual biogeochemical model for microcystin through a comprehensive literature synthesis, identifying four major pools and nine major fluxes in lakes that also connect to the terrestrial environment. This conceptual model can be used as the framework for developing ecosystem mass balances of microcystin. We propose that the concentration of microcystin in the water column is the balance between the import, sediment translocation, production and degradation, uptake, burial, and export. However, substantial unknowns remain pertaining to the magnitude and movement of microcystin. Future investigations should focus on sediment fluxes, drivers of biodegradation, and seasonal dynamics. Adopting the framework of a “microcystin cycle” improves our understanding of processes driving toxin prevalence and helps to prioritize strategies for minimizing exposure risks.
more »
« less
Meta-analysis data for Microcystin as a Biogeochemical Cycle: pools, fluxes, and fates of the cyanotoxin in inland waters
We constructed a conceptual biogeochemical model for microcystin through a comprehensive literature synthesis, identifying four major pools and nine major fluxes in lakes that also connect to the terrestrial environment. We also performed a literature synthesis, collating measurements of various pools and fluxes of microcystin in inland waters from the literature. A subset of those values were used in an analysis of microcystin detection for field surveys of waterbodies and a random effects model to estimate the mean and 95% confidence interval for various microcystin pools and fluxes in lakes.
more »
« less
- Award ID(s):
- 2200391
- PAR ID:
- 10660138
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite successful use of this technique in other fields. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill observation gaps. In this article, we highlight the utility of data assimilation in lake carbon cycling research by using the ensemble Kalman filter to combine simple lake carbon models with observations of lake carbon pools and fluxes. We demonstrate that data assimilation helps reduce uncertainty in estimates of lake carbon pools and fluxes and more accurately estimate the true carbon pool size compared to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.more » « less
-
Abstract Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.more » « less
-
Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting.more » « less
-
Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting.more » « less
An official website of the United States government
