skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 23, 2026

Title: Innovative Pressure-Sensing Wireless Network for High-Resolution Real-Time Monitoring of Soil Frost Depth and Freeze/Thaw Dynamics
The accurate soil frost depth measurement is critical for understanding freeze–thaw cycles and their impact on infrastructure stability, agricultural productivity, and ecosystem dynamics. This study introduces a novel pressure-based sensor integrated with wireless sensor networks (WSNs) to monitor frost depth in real time, offering a significant advancement over traditional manual frost tube methods. By leveraging the expansion of water upon freezing, the sensor detects pressure changes and transmits high-resolution data through a low-power, long-range (LoRa) wireless network. Field experiments demonstrated a strong correlation between the pressure sensor and manual frost tube measurements, with Pearson and Spearman correlation coefficients of 0.80 and 0.78, respectively, validating the sensor’s accuracy. The high temporal resolution of the system, which captures data at 5-min intervals, enabled a detailed analysis of freeze–thaw cycles, revealing rapid changes in frost depth during the early thaw periods. Designed for resilience in harsh winter conditions, the sensor offers a scalable, low-maintenance solution for long-term remote frost monitoring. These results underscore the system’s potential to enhance environmental monitoring, optimize agricultural practices, and mitigate infrastructure risks in response to changing climate conditions.  more » « less
Award ID(s):
2224545
PAR ID:
10660211
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Sensors Journal
Volume:
25
Issue:
17
ISSN:
1530-437X
Page Range / eLocation ID:
33564 to 33578
Subject(s) / Keyword(s):
Soil Temperature measurement Sensors Soil measurements Manuals Wireless sensor networks Monitoring Real-time systems Accuracy Ice
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frost action in soils causes a significant effect on the performance of roadways. This effect is more pronounced in the regions that are experiencing seasonal subfreezing temperatures as the soil undergoes multiple freeze-thaw cycles. Apart from the subfreezing temperature, the frost action is also affected by the soil type as the void ratio and hydraulic conductivity of soils control the presence and movement of water for the growth of ice lenses. Frost heave is mainly attributed to silty soils, but significant frost heave can also occur in clay and sandy soils under favorable environmental conditions. For the present study, frost heave and thaw settlement of clayey and sandy soils, subjected to a one-dimensional freeze-thaw cycle, is investigated to determine how the frost action varies with soil types. Soil specimens were subjected to ten freeze-thaw cycles. Total heaving, heave rate, and water intake were measured as a function of time during testing. The moisture content of the soils after ten freeze-thaw cycles was also measured. The amount of pore water and external water supply affects the total heave during freeze-thaw cycles. Therefore, the effect of moisture availability during the freeze-thaw cycles was also investigated by comparing the results of specimens with or without an external water supply. Results of the study suggested that significant frost heave occurred in both clay and sandy soils. In addition, the application of ten freeze-thaw cycles provided a better estimation of the total heave than that observed with two freeze-thaw cycles (typical/standard numbers of freeze-thaw cycles). The maximum heave (40.9 mm) and heave rate (5.01 mm/day) were found to be higher in clay soil. The presence of an external water supply contributed to the frost action, and total heave was seven times higher in soils with an external water source. Soil with a free water supply showed 1.1–1.7 times higher moisture content after ten cycles compared to the soils with no external water supply. These results were used in estimating the frost heave potential of soils in different environmental conditions. 
    more » « less
  2. Abstract Warmer winters with less snowfall are increasing the frequency of soil freeze–thaw cycles across temperate regions. Soil microbial responses to freeze–thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze–thaw cycles.We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce‐fir forests, then added each of these soil microbial communities to a sterile bulk‐soil in a laboratory microcosm experiment. The inoculated high‐elevation cold and low‐elevation warm microcosms were subjected to diurnal freeze–thaw cycles or constant above‐freezing temperature for 9 days. Then, all microcosms were subjected to a 7‐day above‐freezing recovery period.Overall, we found that the high‐elevation cold community had, relative to the low‐elevation warm community, a smaller reduction in microbial respiration (CO2flux) during freeze–thaw cycles. Further, the high‐elevation cold community, on average, experienced lower freeze–thaw‐induced bacterial mortality than the warm community and may have partly acclimated to freeze–thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze–thaw treatment period and there were no changes in soil extractable carbon or nitrogen.Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze–thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze–thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze–thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract. Permafrost degradation in Arctic lowlands is a critical geomorphic process, increasingly driven by climate warming and infrastructure development. This study applies an integrated geophysical and surveying approach – Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and thaw probing – to characterize near-surface permafrost variability across four land use types in Utqiaġvik, Alaska: gravel road, snow fence, residential building and undisturbed tundra. Results reveal pronounced heterogeneity in thaw depths (0.2 to >1 m) and ice content, shaped by both natural features such as ice wedges and frost heave and anthropogenic disturbances. Roads and snow fences altered surface drainage and snow accumulation, promoting differential thaw, deeper active layers, and localized ground deformation. Buildings in permafrost regions alter the local thermal regime through multiple interacting factors – for example, solar radiation, thermal leakage, snow cover dynamics, and surface disturbance – among others. ERT identified high-resistivity zones (>1,000 Ω·m) interpreted as ice-rich permafrost and low-resistivity features (<5 Ω·m) likely associated with cryopegs or thaw zones. GPR delineated subsurface stratigraphy and supported interpretation of ice-rich layers and permafrost features. These findings underscore the strong spatial coupling between surface infrastructure and subsurface thermal and hydrological regimes in ice-rich permafrost. Geophysical methods revealed subsurface features and thaw depth variations across different land use types in Utqiaġvik, highlighting how infrastructure alters permafrost conditions. These findings support localized assessment of ground stability in Arctic environments. 
    more » « less
  4. Structural Health Monitoring (SHM) uses wireless sensor network (WSN) to monitor a civil construction’s conditions remotely and constantly for its sustainable usage. Security in WSN for SHM is essential to safeguard critical transportation infrastructure such as bridges. While WSN offers cost-effective solutions for Bridge SHM, its wireless nature expands attack surfaces, making security a significant concern. Despite progress in addressing security issues in WSN for Bridge SHM, challenges persist in device authentication due to the unique placement of sensor nodes and their resource constraints, particularly in energy conservation requirements to extend the system’s lifetime. To overcome these limitations, this paper proposes an innovative authentication scheme with deep learning at the physical layer. Our approach steers away from conventional device authentication methods: no challenge-response protocol with heavy communication overhead and no cryptography of intensive computation. Instead, we use radio frequency (RF) fingerprinting to authenticate sensor nodes. Deep learning is chosen for its ability to discover patterns in large datasets without manual feature engineering. We model our scheme on IEEE 802.11ah, Wi-Fi HaLow of long-range communication and low-power consumption for machine-to-machine (M2M) applications. Simulations and experiments using universal software radio peripheral (USRP) demonstrate the effectiveness of the proposed scheme. By integrating security into Cyber-Physical System/the Internet-of-Things (CPS/IoT) design of WSN for Bridge SHM, our work contributes to critical infrastructure protection. 
    more » « less
  5. Projections for the northeastern United States indicate that mean air temperatures will rise and snowfall will become less frequent, causing more frequent soil freezing. To test fungal responses to these combined chronic and extreme soil temperature changes, we conducted a laboratory-based common garden experiment with soil fungi that had been subjected to different combinations of growing season soil warming, winter soil freeze/thaw cycles, and ambient conditions for 4 years in the field. We found that fungi originating from field plots experiencing a combination of growing season warming and winter freeze/thaw cycles had inherently lower activity of acid phosphatase, but higher cellulase activity, that could not be reversed in the lab. In addition, fungi quickly adjusted their physiology to freeze/thaw cycles in the laboratory, reducing growth rate, and potentially reducing their carbon use efficiency. Our findings suggest that less than 4 years of new soil temperature conditions in the field can lead to physiological shifts by some soil fungi, as well as irreversible loss or acquisition of extracellular enzyme activity traits by other fungi. These findings could explain field observations of shifting soil carbon and nutrient cycling under simulated climate change. 
    more » « less