skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 9, 2026

Title: Inside the Stagnation Radius of the Nearest Billion-solar-mass Black Hole
Abstract We used the NSF Jansky Very Large Array at a frequencyν = 22 GHz to study the nearest billion-solar-mass black hole (BH), in the early-type galaxy NGC 3115 at a distance of 9.7 Mpc. We localize a faint continuum nucleus, with flux densityS22 GHz = 48.2 ± 6.4μJy, to a FWHM diameterd22 GHz < 59 mas (2.8 pc). We find no evidence for adjacent emission within a stagnation region of radiusRsta ∼ 360 mas (17 pc) identified in a recent hydrodynamic simulation tailored to NGC 3115. Within that region, the simulated gas flow developed into an advection-dominated accretion flow (ADAF). The nucleus’ luminosity densityL22 GHz = 5.4 × 1017W Hz−1is about 60 times that of Sagittarius A. The nucleus’ spectral index α 10 GHz 22 GHz = 1.85 ± 0.18 (Sν ∝ να) indicates optically thin synchrotron emission. The spectral energy distribution of the nucleus peaks nearνpeak = 9 GHz. Modeling this radio peak as an ADAF implies a BH massMADAF = (1.2 ± 0.2) × 109M, consistent with previous estimates of (1–2) × 109Mfrom stellar or hot-gas dynamics. Also, the Eddington-scaled accretion rate for NGC 3115, M ̇ ADAF / M ̇ Edd = 1 . 2 0.6 + 1.0 × 1 0 8 , is about 4–8 times lower than recent estimates for Sagittarius A more » « less
Award ID(s):
2034306
PAR ID:
10660245
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
990
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the analysis of a microlensing event KMT-2022-BLG-0086 of which the overall light curve is not described by a binary-lens single-source (2L1S) model, which suggests the existence of an extra lens or an extra source. We found that the event is best explained by the binary-lens binary-source (2L2S) model, but the 2L2S model is only favored over the triple-lens single-source (3L1S) model by Δχ2 ≃ 9. Although the event has noticeable anomalies around the peak of the light curve, they are not enough covered to constrain the angular Einstein radiusθE, thus we only measure the minimum angular Einstein radius θ E , min . From the Bayesian analysis, it is found that that the binary lens system is a binary star with masses of ( m 1 , m 2 ) = ( 0.4 6 0.25 + 0.35 M , 0.7 5 0.55 + 0.67 M ) at a distance of D L = 5.8 7 1.79 + 1.21 kpc, while the triple lens system is a brown dwarf or a massive giant planet in a low-mass binary-star system with masses of ( m 1 , m 2 , m 3 ) = ( 0.4 3 0.35 + 0.41 M , 0.05 6 0.047 + 0.055 M , 20.8 4 17.04 + 20.20 M J ) at a distance of D L = 4.0 6 3.28 + 1.39 kpc, indicating a disk lens system. The 2L2S model yields the relative lens-source proper motion ofμrel ≥ 4.6 mas yr−1that is consistent with the Bayesian result, whereas the 3L1S model yieldsμrel ≥ 18.9 mas yr−1, which is more than three times larger than that of a typical disk object of ∼6 mas yr−1and thus is not consistent with the Bayesian result. This suggests that the event is likely caused by the binary-lens binary-source model. 
    more » « less
  2. Abstract We report on the discovery and analysis of the planetary microlensing event OGLE-2019-BLG-1180 with a planet-to-star mass ratioq∼ 0.003. The event OGLE-2019-BLG-1180 has unambiguous cusp-passing and caustic-crossing anomalies, which were caused by a wide planetary caustic withs≃ 2, wheresis the star–planet separation in units of the angular Einstein radiusθE. Thanks to well-covered anomalies by the Korea Micorolensing Telescope Network (KMTNet), we measure both the angular Einstein radius and the microlens parallax in spite of a relatively short event timescale oftE= 28 days. However, because of a weak constraint on the parallax, we conduct a Bayesian analysis to estimate the physical lens parameters. We find that the lens system is a super-Jupiter-mass planet of M p = 1.75 0.51 + 0.53 M J orbiting a late-type star of M h = 0.55 0.26 + 0.27 M at a distance D L = 6.1 1.3 + 0.9 kpc . The projected star–planet separation is a = 5.19 1.23 + 0.90 au , which means that the planet orbits at about four times the snow line of the host star. Considering the relative lens–source proper motion ofμrel= 6 mas yr−1, the lens will be separated from the source by 60 mas in 2029. At that time one can measure the lens flux from adaptive optics imaging of Keck or a next-generation 30 m class telescope. OGLE-2019-BLG-1180Lb represents a growing population of wide-orbit planets detected by KMTNet, so we also present a general investigation into prospects for further expanding the sample of such planets. 
    more » « less
  3. Abstract We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( K 0 = 18 9 + 11 keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate M ̇ cool = 100 60 + 90 M yr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate is SFR [ O II ] = 1.7 0.6 + 1.0 M yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power P cav = 3.2 1.3 + 2.1 × 10 44 erg s−1, which is consistent with the X-ray cooling luminosity ( L cool = 1.9 0.5 + 0.2 × 10 44 erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters. 
    more » « less
  4. Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are 9.3 5.4 + 4.6 and 4.2 2.0 + 1.9 M pc 2 ( K km s 1 ) 1 , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( U ¯ ). Among them, U ¯ , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, U ¯ , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relations α CO ( 2 1 ) Σ 0.5 and α CO ( 1 0 ) Σ 0.2 . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. 
    more » « less
  5. Abstract The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution of D M h o s t = 430 220 + 140 or 280 170 + 140 p c c m 3 (observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to be F ˜ G 4.5 11 ( pc 2 km ) 1 / 3 , suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe. 
    more » « less