Abstract The Rayleigh–Taylor (RT) instability is ubiquitously observed, yet has traditionally been studied using ideal fluid models. Collisionality can vary strongly across the fluid interface, and previous work demonstrates the necessity of kinetic models to completely capture dynamics in certain collisional regimes. Where previous kinetic simulations used spatially and temporally constant collision frequency, this work presents five-dimensional (two spatial, three velocity dimensions) continuum-kinetic simulations of the RT instability using a more realistic spatially varying collision frequency. Three cases of collisional variation are explored for two Atwood numbers: low to intermediate, intermediate to high, and low to high. The low-to-intermediate case exhibits no RT instability growth, while the intermediate-to-high case is similar to a fluid-limit kinetic case with interface widening biased toward the lower-collisionality region. A novel contribution of this work is the low-to-high collisionality case that shows significantly altered instability growth through an upward movement of the interface and damped spike growth due to increased free-streaming particle diffusion in the lower region. Contributions to the energy flux from the non-Maxwellian portions of the distribution function are not accessible to fluid models and are greatest in magnitude in the spike and regions of low collisionality. Increasing the Atwood number results in greater RT instability growth and reduced upward interface movement. Deviation of the distribution function from Maxwellian is inversely proportional to collision frequency and concentrated around the fluid interface. The linear phase of RT instability growth is well described by theoretical linear growth rates accounting for viscosity and diffusion.
more »
« less
Electromagnetic Observables of Weakly Collisional Black Hole Accretion
Abstract The black holes in the Event Horizon Telescope sources Messier 87* and Sagittarius A* (Sgr A*) are embedded in a hot, collisionless plasma that is fully described in kinetic theory yet is usually modeled as an ideal, magnetized fluid. In this Letter, we present results from a new set of weakly collisional fluid simulations in which leading-order kinetic effects are modeled as viscosity and heat conduction. Consistent with earlier, lower-resolution studies, we find that overall flow dynamics remain very similar between ideal and nonideal models. For the first time, we synthesize images and spectra of Sgr A* from weakly collisional models—assuming an isotropic, thermal population of electrons—and find that these remain largely indistinguishable from ideal fluid predictions. However, most weakly collisional models exhibit lower light-curve variability, with all magnetically dominated models showing a small but systematic decrease in variability.
more »
« less
- Award ID(s):
- 2034306
- PAR ID:
- 10660249
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 993
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Energy transport in weakly collisional plasma systems is often studied with fluid models and diagnostics. However, the applicability of fluid models is limited when collisions are weak or absent, and using a fluid approach can obscure kinetic processes that provide key insights into the physics of energy transport. Kinetic diagnostics retain all of the information in 3D-3V phase space and thereby reach beyond the insights of fluid models to elucidate the mechanisms responsible for collisionless energy transport. In this work, we derive the Kinetic Pressure–Strain (KPS): a kinetic analog of the pressure–strain interaction, which is the channel between flow energy density and internal energy density in fluid models. Through two case studies of electron Landau damping, we demonstrate that the KPS diagnostic can elucidate kinetic mechanisms that are responsible for energy transport in this channel, just as the related field–particle correlation is known to identify kinetic mechanisms of transport between electromagnetic field energy density and kinetic energy density in particle flows. In addition, we show that resonant electrons play a major role in transferring energy between fluid flows and internal energy during the process of Landau damping.more » « less
-
ABSTRACT The coupling state between ions and neutrals in the interstellar medium plays a key role in the dynamics of magnetohydrodynamic (MHD) turbulence, but is challenging to study numerically. In this work, we investigate the damping of MHD turbulence in a partially ionized medium using 3D two-fluid (ions + neutrals) simulations generated with the athenak code. Specifically, we examine the velocity, density, and magnetic field statistics of the two-fluid MHD turbulence in different regimes of neutral-ion coupling. Our results demonstrate that when ions and neutrals are strongly coupled, the velocity statistics resemble those of single-fluid MHD turbulence. Both the velocity structures and kinetic energy spectra of ions and neutrals are similar, while their density structures can be significantly different. With an excess of small-scale sharp density fluctuations in ions, the density spectrum in ions is shallower than that of neutrals. When ions and neutrals are weakly coupled, the turbulence in ions is more severely damped due to the ion-neutral collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum and density spectrum in ions compared to the Kolmogorov spectrum. We also find that the magnetic energy spectrum basically follows the shape of the kinetic energy spectrum of ions, irrespective of the coupling regime. In addition, we find large density fluctuations in ions and neutrals and thus spatially inhomogeneous ionization fractions. As a result, the neutral-ion decoupling and damping of MHD turbulence take place over a range of length-scales.more » « less
-
ABSTRACT We examine dissipation and energy conversion in weakly collisional plasma turbulence, employing in situ observations from the Magnetospheric Multiscale mission and kinetic particle-in-cell simulations of proton–electron plasma. A previous result indicated the presence of viscous-like and resistive-like scaling of average energy conversion rates – analogous to scalings characteristic of collisional systems. This allows for extraction of collisional-like coefficients of effective viscosity and resistivity, and thus also determination of effective Reynolds numbers based on these coefficients. The effective Reynolds number, as a measure of the available bandwidth for turbulence to populate various scales, links turbulence macroscale properties with kinetic plasma properties in a novel way.more » « less
-
The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains in local thermodynamic equilibrium (LTE), have long been used to describe turbulence in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas, from the solar wind to the intracluster medium (ICM) of galaxy clusters, are only weakly collisional at best, meaning that significant deviations from LTE are not only possible but common. Recent studies have demonstrated that the kinetic physics inherent to this weakly collisional regime can fundamentally transform the evolution of such plasmas across a wide range of scales. Here, we explore the consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,$$\beta \gg 1$$, turbulence, focusing on the role of a self-organizational effect known as ‘magneto-immutability’. We describe this self-organization analytically through a high-$$\beta$$, reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result, the turbulent cascade of Alfvénic fluctuations continues below the putative viscous scale to form a robust, nearly conservative, MHD-like inertial range. These findings are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that employ a collisional closure to mimic the effects of microinstabilities. We find that microinstabilities occupy a small ($${\sim }5\,\%$$) volume-filling fraction of the plasma, even when the pressure anisotropy is driven strongly towards its instability thresholds. We discuss these results in the context of recent predictions for ion-vs-electron heating in low-luminosity accretion flows and observations implying suppressed viscosity in ICM turbulence.more » « less
An official website of the United States government

