skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 20, 2026

Title: Hot carrier dynamics in operational metal halide perovskite solar cells
While the low-energy side of the ΔAcurves remains stable over time, the high-energy side changes dramatically, reflecting hot carrier thermalization, which occurs at different rates on the hole and electron transport sides in perovskite solar cells.  more » « less
Award ID(s):
2230706
PAR ID:
10660281
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
RSC
Date Published:
Journal Name:
EES Solar
Volume:
1
Issue:
5
ISSN:
3033-4063
Page Range / eLocation ID:
828 to 838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work serves as an observation‐based exploration into the role of wave‐driven turbulence at the air‐sea interface by measuring Turbulent Kinetic Energy (TKE) dissipation rates above and below the sea surface. Subsurface ocean measurements confirm a TKE dissipation rate enhancement relative to the predicted law‐of‐the‐wall (εobs > εp), which appears to be fully supported by wave breaking highlighting the role of the transport terms in balancing the subsurface TKE budget. Simultaneous measurements of TKE dissipation rates on the atmospheric side capture a deficit relative to the law‐of‐the‐wall (εobs < εp). This deficit is explained in terms of wave‐induced perturbations, with observed convergence to the law‐of‐the‐wall at 14 m above mean sea level. The deficit on the atmospheric side provides an estimate of the energy flux divergence in the wave boundary layer. An exponential function is used to integrate in the vertical and provide novel estimates of the amount of energy going into the wave field. These estimates correlate well with classic spectral input parameterizations and can be used to derive an effective wave‐scale, capturing wind‐wave coupling purely from atmospheric observations intimately tied to wave‐induced perturbations of the air‐flow. These atmospheric and oceanic observations corroborate the commonly assumed input‐dissipation balance for waves at wind speeds in the 8‐14 ms−1range in the presence of developed to young seas. At wind speeds above 14 ms−1under young seas ()observations suggest a deviation from the TKE input‐dissipation balance in the wave field. 
    more » « less
  2. Inspired by Nature, we present a polypeptide-based organic redox-active material constructed from renewable feedstocks, L-glutamic acid (an amino acid) and riboflavin (vitamin B2), to address challenges with start-to-end-of-life management in energy storage systems (ESSs). The amino acid was utilized to establish a degradable polymer backbone, along which many copies of riboflavin were incorporated to serve as the redox-active pendant groups that enabled energy storage. The overall synthesis involved the ring-opening polymerization (ROP) of anl-glutamic acid-derivedN-carboxyanhydride (NCA) monomer, followed by side chain activation with azides and, finally, click coupling to achieve installation of alkyne-functionalized riboflavin moieties. The steric bulkiness and rich chemical functionality of riboflavin resulted in synthetic complexities that required reaction optimization to achieve the desired polymer structure. Electrochemical characterization of the resultant riboflavin polypeptide, in organic electrolyte, showed quasireversible redox activity with a half-wave potential (E1/2) ofca.−1.10 Vvs.ferrocene/ferrocenium (Fc/Fc+). Cell viability assays revealed biocompatibility, as indicated by negligible cytotoxicity for fibroblast cells. The polypeptide design, consisting of labile amide backbone linkages and side-chain ester functionalities that tethered the riboflavin units to the backbone, enabled hydrolytic degradation to recover building blocks for future upcycling or recycling. This bioinspired strategy advances the development of degradable redox-active polymers and promotes sustainable materials design for circular energy storage technologies. 
    more » « less
  3. Abstract A new class of high‐temperature dipolar polymers based on sulfonylated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SO2‐PPO) was synthesized by post‐polymer functionalization. Owing to the efficient rotation of highly polar methylsulfonyl side groups below the glass transition temperature (Tg≈220 °C), the dipolar polarization of these SO2‐PPOs was enhanced, and thus the dielectric constant was high. Consequently, the discharge energy density reached up to 22 J cm−3. Owing to its highTg , the SO2‐PPO25sample also exhibited a low dielectric loss. For example, the dissipation factor (tan δ) was 0.003, and the discharge efficiency at 800 MV m−1was 92 %. Therefore, these dipolar glass polymers are promising for high‐temperature, high‐energy‐density, and low‐loss electrical energy storage applications. 
    more » « less
  4. Abstract The morphological stability of an organic photovoltaic (OPV) device is greatly affected by the dynamics of donors and acceptors occurring near the device's operational temperature. These dynamics can be quantified by the glass transition temperature (Tg) of conjugated polymers (CPs). Because flexible side chains possess much faster dynamics, the cleavage of the alkyl side chains will reduce chain dynamics, leading to a higherTg. In this work, theTgs for CPs are systematically studied with controlled side chain cleavage. Isothermal annealing of polythiophenes featuring thermally cleavable side chains at 140 °C, is found to remove more than 95% of alkyl side chains in 24 h, and raise the backboneTgfrom 23 to 75 °C. Coarse grain molecular dynamics simulations are used to understand theTgdependence on side chain cleavage. X‐ray scattering indicates that the relative degree of crystallization remains constantduring isothermal annealing process. The effective conjugation length is not influenced by thermal cleavage; however, the density of chromophore is doubled after the complete removal of alkyl side chains. The combined effect of enhancingTgand conserving crystalline structures during the thermal cleavage process can provide a pathway to improving the stability of optoelectronic properties in future OPV devices. 
    more » « less
  5. Abstract Over the past decades, many critical molecular players have been uncovered to control distinct steps in olfactory circuit assembly in Drosophila. Among these, multi-member gene families of cell surface proteins are of interest because they can act as neuron-specific identification/recognition tags in combinations and contribute to circuit assembly in complex brains through their heterophilic or homophilic interactions. Recently, a multi-protein interactome has been described between the Beat and Side families of IgSF proteins. Here, we use the publicly available single-cell RNA-seq datasets and newly generated gene trap transgenic driver lines to probe thein vivospatial expression pattern of thebeat/sidegene families in odorant receptor neurons (ORNs) and their synaptic target projection neurons (PNs).Our results revealed that each ORN and its synaptic target PN class expresses a class-specific combination ofbeat/sidegenes, hierarchically regulated by lineage-specific genetic programs. Though ORNs or PNs from closer lineages tend to possess more similarbeat/sideprofiles, we also found many examples of divergence from this pattern among closely related ORNs and closely related PNs. To explore whether the class-specific combination ofbeats/sidesdefines ORN-PN matching specificity, we perturbed presynapticbeat-IIaand postsynapticside-IVin two ORN-PN partners. However, disruption of Beat-IIa-Side-IV interaction did not produce any significant mistargeting in these two examined glomeruli. Though without affecting general glomerular targeting, knockdown ofsidein ORNs leads to the reduction of synaptic development. Interestingly, we found conserved expression patterns ofbeat/sideorthologs across ORNs in ants and mosquitoes, indicating the shared regulatory strategies specifying the expression of these duplicated paralogs in insect evolution. Overall, this comprehensive analysis of expression patterns lays a foundation for in-depth functional investigations into how Beat/Side combinatorial expression contributes to olfactory circuit assembly. 
    more » « less