### Access Dataset and extensive metadata can be accessed and downloaded via: [https://arcticdata.io/data/10.18739/A2CZ32678/](https://arcticdata.io/data/10.18739/A2CZ32678/) ### Overview A limited understanding of how glacier-ocean interactions lead to iceberg calving and melting at the ice-ocean boundary contributes to uncertainty in predictions of sea level rise. Dense packs of icebergs and sea ice, known as ice mélange, occur in many fjords in Greenland and Antarctica. Observations suggest that ice mélange may directly affect iceberg calving by pressing against the glacier front and indirectly affect glacier melting by controlling where and when icebergs melt which can impact ocean circulation and ocean heat transport towards glaciers. However, the interactions between ice mélange, ocean circulation, and iceberg calving have not been systematically investigated due to the difficulty of conducting field work in Greenland fjords. In order to investigate the dynamics of ice mélange (and other floating granular materials) and to inform development of ice mélange models, we conducted a series of laboratory experiments using synthetic icebergs (plastic blocks) that were pushed down a tank by a synthetic glacier. This data set consists of force measurements on the glacier terminus and time-lapse photographs of the experiments that were used for visualizing motion.
more »
« less
Multibeam sonar data of icebergs from LeConte Glacier, southeast Alaska, June 2022 - July 2023
{"Abstract":["These data include processed multibeam sonar and drone-derived three-dimensional point clouds of icebergs surveyed between 2022 and 2023 in Xeitl Geeyí’ (LeConte Bay), Southeast Alaska. Thirteen grounded icebergs were mapped using Norbit iWBMS and Winghead i77h/i80s sonars, and one recently capsized floating iceberg was mapped using a DJI Air 2S drone. The datasets were collected to quantify submarine iceberg morphology and surface roughness as part of a broader effort to improve understanding of ice–ocean interactions at near-vertical ice-ocean boundaries. The methods and analyses are described in Cohen et al. (submitted in 2025), "Characterizing submarine ice roughness at icebergs from a temperate tidewater glacier", under review in the Journal of Glaciology. All data are georeferenced to World Geodetic System 1984 (WGS 84) and Universal Transverse Mercator Zone 8 N (meters in easting/northing)."]}
more »
« less
- Award ID(s):
- 2023674
- PAR ID:
- 10660298
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Iceberg Multibeam Morphology Fjord Ice-ocean Interactions Ice Roughness
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The role of icebergs in narrow fjords hosting marine-terminating glaciers in Greenland is poorly understood, even though iceberg melt results in asubstantial freshwater flux that can exceed the subglacial discharge. Furthermore, the melting of deep-keeled icebergs modifies the verticalstratification of the fjord and, as such, can impact ice–ocean exchanges at the glacier front. We model an idealised representation of thehigh-silled Ilulissat Icefjord in West Greenland with the MITgcm ocean circulation model, using the IceBerg package to study the effect of submarineiceberg melt on fjord water properties over a runoff season, and compare our results with available observations from 2014. We find the subglacialdischarge plume to be the primary driver of the seasonality of circulation, glacier melt and iceberg melt. Furthermore, we find that melting oficebergs modifies the fjord in three main ways: first, icebergs cool and freshen the water column over their vertical extent; second, iceberg-melt-induced changes to fjord stratification cause the neutral buoyancy depth of the plume and the export of glacially modified waters to be deeper;third, icebergs modify the deep basin, below their vertical extent, by driving mixing of the glacially modified waters with the deep-basin watersand by modifying the incoming ambient waters. Through the combination of cooling and causing the subglacial-discharge-driven plume to equilibratedeeper, icebergs suppress glacier melting in the upper layer, resulting in undercutting of the glacier front. Finally, we postulate that the impactof submarine iceberg melt on the neutral buoyancy depth of the plume is a key mechanism linking the presence of an iceberg mélange with theglacier front, without needing to invoke mechanical effects.more » « less
-
Abstract Baffin Bay is the travel destination of most icebergs calving from west Greenland. They commonly follow the bay's cyclonic circulation and might end up far south along the coast of Newfoundland and Labrador, where many shipping routes converge. Given the hazard that icebergs pose to marine transportation, understanding their distribution is fundamental. One of the forces driving iceberg drift arises from the presence of sea ice. Observations in the Southern Ocean indicate that icebergs get locked in thick and concentrated sea ice. We present observations that support the occurrence of this sea ice locking mechanism (SIL) in Baffin Bay as well. Most iceberg models, however, represent the sea ice force over an iceberg as a simple drag force. Here, we implement a new parameterization in the iceberg module of the Nucleus for European Modeling of the Ocean (NEMO‐ICB) to represent SIL. We show that, by using this new parameterization, icebergs are more likely to travel outside of the Baffin Island Current during winter, which is supported by satellite observations. There is a slight improvement in the representation of iceberg severity along the coast of Newfoundland and Labrador and a slight shift of iceberg melt toward this region and Lancaster Sound/Hudson Strait. Although the impacts of icebergs on sea ice are still not represented, and targeted observations are needed for model calibration regarding sea ice concentration thresholds from which icebergs get locked, we are confident that this model improvement takes iceberg modeling one step forward toward reality.more » « less
-
Abstract. Frontal ablation has caused 32 %–66 % of Greenland Ice Sheet mass loss since 1972, and despite its importance in driving terminus change, ocean thermal forcing remains crudely incorporated into large-scale ice sheet models. In Greenland, local fjord-scale processes modify the magnitude of thermal forcing at the ice–ocean boundary but are too small scale to be resolved in current global climate models. For example, simulations used in the Ice Sheet Intercomparison Project for CMIP6 (ISMIP6) to predict future ice sheet change rely on the extrapolation of regional ocean water properties into fjords to drive terminus ablation. However, the accuracy of this approach has not previously been tested due to the scarcity of observations in Greenland fjords, as well as the inability of fjord-scale models to realistically incorporate icebergs. By employing the recently developed IceBerg package within the Massachusetts Institute of Technology general circulation model (MITgcm), we here evaluate the ability of ocean thermal forcing parameterizations to predict thermal forcing at tidewater glacier termini. This is accomplished through sensitivity experiments using a set of idealized Greenland fjords, each forced with equivalent ocean boundary conditions but with varying tidal amplitudes, subglacial discharge, iceberg coverage, and bathymetry. Our results indicate that the bathymetric obstruction of external water is the primary control on near-glacier thermal forcing, followed by iceberg submarine melting. Despite identical ocean boundary conditions, we find that the simulated fjord processes can modify grounding line thermal forcing by as much as 3 °C, the magnitude of which is largely controlled by the relative depth of bathymetric sills to the Polar Water–Atlantic Water thermocline. However, using a common adjustment for fjord bathymetry we can still predict grounding line thermal forcing within 0.2 °C in our simulations. Finally, we introduce new parameterizations that additionally account for iceberg-driven cooling that can accurately predict interior fjord thermal forcing profiles both in iceberg-laden simulations and in observations from Kangiata Sullua (Ilulissat Icefjord).more » « less
-
Abstract Large tabular icebergs account for the majority of ice mass calved from Antarctic ice shelves, but are omitted from climate models. Specifically, these models do not account for iceberg breakup and as a result, modeled large icebergs could drift to low latitudes. Here, we develop a physically based parameterization of iceberg breakup based on the “footloose mechanism” suitable for climate models. This mechanism describes breakup of ice pieces from the iceberg edges triggered by buoyancy forces associated with a submerged ice foot fringing the iceberg. This foot develops as a result of ocean‐induced melt and erosion of the iceberg freeboard explicitly parameterized in the model. We then use an elastic beam model to determine when the foot is large enough to trigger calving, as well as the size of each child iceberg, which is controlled with the ice stiffness parameter. We test the breakup parameterization with a realistic large iceberg calving‐size distribution in the Geophysical Fluid Dynamics Laboratory OM4 ocean/sea‐ice model and obtain simulated iceberg trajectories and areas that closely match observations. Thus, the footloose mechanism appears to play a major role in iceberg decay that was previously unaccounted for in iceberg models. We also find that varying the size of the broken ice bits can influence the iceberg meltwater distribution more than physically realistic variations to the footloose decay rate.more » « less
An official website of the United States government
