skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconfigurable Electromagnetically Unclonable Functions Based on Graphene Radio-Frequency Modulators
Modern society, revolutionized by the Internet of Things (IoTs), is witnessing exponential growth in the number of connected devices and the volume of data being generated and shared, raising significant concerns about safeguarding classified information against various cyber threats. Here, we introduce a lightweight, robust hardware security primitive based on the electromagnetic physical unclonable function (PUF) for cryptographic identification and authentication of wireless devices. Unlike traditional digital-based PUFs, the proposed electromagnetic PUF keys are generated using graphene-based harmonic transponders, of which the inherent variations in electronic properties of ambipolar graphene field-effect transistors (GFETs) result in highly stochastic, mixed modulations of radio frequency (RF) signals (i.e., unique electromagnetic fingerprints). Our experimental results demonstrate that this electromagnetic PUF exhibits excellent PUF performance metrics in terms of randomness, uniqueness, reliability, and resistance to machine learning-based modeling attacks. Moreover, the PUF keys can be reconfigured by altering the RF excitation frequency or through the electrostatic gating effect, further strengthening the security and resilience against modeling attacks. The proposed electromagnetic PUF may be well-suited for a variety of wireless authentication, encryption, and anticounterfeiting applications, and supports cryptographic key generation.  more » « less
Award ID(s):
2210861
PAR ID:
10660861
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Nano
Volume:
20
Issue:
1
ISSN:
1936-0851
Page Range / eLocation ID:
421 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physically unclonable functions (PUFs) are a class of hardware-specific security primitives based on secret keys extracted from integrated circuits, which can protect important information against cyberattacks and reverse engineering. Here, we put forward an emerging type of PUF in the electromagnetic domain by virtue of the self-dual absorber-emitter singularity that uniquely exists in the non-Hermitian parity-time (PT)–symmetric structures. At this self-dual singular point, the reconfigurable emissive and absorptive properties with order-of-magnitude differences in scattered power can respond sensitively to admittance or phase perturbations caused by, for example, manufacturing imperfectness. Consequently, the entropy sourced from inevitable manufacturing variations can be amplified, yielding excellent PUF security metrics in terms of randomness and uniqueness. We show that this electromagnetic PUF can be robust against machine learning–assisted attacks based on the Fourier regression and generative adversarial network. Moreover, the proposed PUF concept is wavelength-scalable in radio frequency, terahertz, infrared, and optical systems, paving a promising avenue toward applications of cryptography and encryption. 
    more » « less
  2. Physical Unclonable Functions (PUFs) leverage manufacturing process imperfections that cause propagation delay discrepancies for the signals traveling along these paths. While PUFs can be used for device authentication and chip-specific key generation, strong PUFs have been shown to be vulnerable to machine learning modeling attacks. Although there is an impression that combinational circuits must be designed without any loops, cyclic combinational circuits have been shown to increase design security against hardware intellectual property theft. In this paper, we introduce feedback signals into traditional delay-based PUF designs such as arbiter PUF, ring oscillator PUF, and butterfly PUF to give them a wider range of possible output behaviors and thus an edge against modeling attacks. Based on our analysis, cyclic PUFs produce responses that can be binary, steady-state, oscillating, or pseudo-random under fixed challenges. The proposed cyclic PUFs are implemented in field programmable gate arrays, and their power and area overhead, in addition to functional metrics, are reported compared with their traditional counterparts. The security gain of the proposed cyclic PUFs is also shown against state-of-the-art attacks. 
    more » « less
  3. Sahula, Vineet; Mohanty, Saraju (Ed.)
    This paper proposes a new controlled Physical Unclonable Function (PUF), Veda-PUF, which uses an algorithm for pre-processing and post-processing the input and output of PUF to increase the security of the keys generated in Internet-of-Things (IoT) devices. The key size of the PUF can be increased using the proposed protocol without compromising the integrity of the keys generated. The uniqueness of the generated keys was 50 % and the reliability of the keys generated is 99.9 % which are close to the ideal values. The proposed control algorithm also increases the uniqueness and reliability of the PUF keys after processing. This increases the number of PUF keys that can be used for various applications. 
    more » « less
  4. null (Ed.)
    Electronic money (e-money or e-Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e-money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF-Cash. PUF-Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy-preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware-based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF-Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large-scale applications. An in-depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model-building, impersonation, and side-channel variants. 
    more » « less
  5. Electronic money (e‐money or e‐Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e‐money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF‐Cash. PUF‐Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy‐preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware‐based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF‐Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large‐scale applications. An in‐depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model‐building, impersonation, and side‐ channel variants. 
    more » « less