skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Multi‐Elemental Tracers in the Amerasian Basin Reveal Interlinked Biogeochemical and Physical Processes in the Arctic Ocean Upper Halocline
Abstract The physical and biogeochemical properties of the western Arctic Ocean are rapidly changing, resulting in cascading shifts to the local ecosystems. The nutrient‐rich Pacific water inflow to the Arctic through the Bering Strait is modified on the Chukchi and East Siberian shelves by brine rejection during sea ice formation, resulting in a strong halocline (called the Upper Halocline Layer (UHL)) that separates the cold and relatively fresh surface layer from the warmer and more saline (and nutrient‐poor) Atlantic‐derived water below. Biogeochemical signals entrained into the UHL result from Pacific Waters modified by sediment and river influence on the shelf. In this synthesis, we bring together data from the 2015 Arctic U.S. GEOTRACES program to implement a multi‐tracer (dissolved and particulate trace elements, radioactive and stable isotopes, macronutrients, and dissolved gas/atmospheric tracers) approach to assess the relative influence of shelf sediments, rivers, and Pacific seawater contribution to the Amerasian Arctic halocline. For each element, we characterized their behavior as mixing dominated (e.g., dCu, dGa), shelf‐influenced (e.g., dFe, dZn), or a combination of both (e.g., dBa, dNi). Leveraging this framework, we assessed sources and sinks contributing to elemental distributions: shelf sediments (e.g., dFe, dZn, dCd, dHg), riverine sources, (e.g., dCu, dBa, dissolved organic carbon), and scavenging by particles originating on the shelf (e.g., dFe, dMn, dV, etc.). Additionally, synthesized results from isotopic and atmospheric tracers yielded tracer age estimates for the Upper Halocline ranging between 1 and 2 decades on a spatial gradient consistent with cyclonic circulation.  more » « less
Award ID(s):
2049272 2023237
PAR ID:
10661031
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
39
Issue:
4
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. T he Copper River is a major source of freshwater to the Northern Gulf of Alaska (NGA) shelf with a seasonal cycle t hat reaches peak discharge in summer. This glacially-fed river also provides a large input of dissolved chemicals t o the NGA, and because of its large particle load, it impacts the distribution of particle-reactive elements. Summertime sampling of shelf water properties was carried out within the Copper River plume region during two y ears: first during a period of upwelling-favorable winds and higher river discharge (4–7 July 2019) and later during lower river discharge and more typical downwelling conditions (11–13 July 2020). Although these wind conditions were observed in separate years, both can occur over the course of a single summer. We found that the e xport of most nutrients to surface shelf waters was enhanced under upwelling-favorable winds accompanied by higher river discharge compared to downwelling conditions and lower discharge. For example, greater cross- shelf plume transport in 2019 resulted in higher mid-shelf surface inventories for nitrate +nitrite (N +N), silicic acid (H4 SiO 4 ), phosphate (PO4 3 − ), dissolved Fe (dFe), and dissolved Cu (dCu) compared to 2020. Entrainment of relatively macronutrient-rich subsurface waters under upwelling conditions may also have contributed t o the enhancement of these mid-shelf nutrient inventories. The observed high N:P ratios in plume waters were likely driven by the scavenging of P within particle-laden plume waters. Similarly, we observed lower than expected [dFe] (1.58 to 6.12 nM) in particle-laden plume waters, likely a result of enhanced scavenging combined with low concentrations of dissolved Fe-binding ligands. Although dNi and dZn have a river source, we observed lower concentrations in surface shelf waters under upwelling conditions, suggesting enhanced dilution b y relatively micronutrient-poor subsurface waters. Results highlight the influence of sub-seasonal variations in atmospheric forcing on nutrient distributions and suggest that this forcing also impacts the location and timing of primary production hotspots during summer, adding to the ecological mosaic of the NGA across a range of temporal and spatial scales. 
    more » « less
  2. Abstract A striking feature of Oxygen Deficient Zones (ODZs) on the eastern boundary of the Pacific Ocean are large subsurface plumes of iodide. Throughout the oceans, iodate is the predominant and thermodynamically favored species of dissolved iodine, but iodate is depleted within these plumes. The origin of iodide plumes and mechanism of reduction of iodate to iodide remains unclear but is thought to arise from a combination of in situ reduction and inputs from reducing shelf sediments. To distinguish between these sources, we investigated iodine redox speciation along the Oregon continental shelf. This upwelling system resembles ODZs but exhibits episodic hypoxia, rather than a persistently denitrifying water column. We observed elevated iodide in the benthic boundary layer overlying shelf sediments, but to a much smaller extent than within ODZs. There was no evidence of offshore plumes of iodide or increases in total dissolved iodine. Results suggest that an anaerobic water column dominated by denitrification, such as in ODZs, is required for iodate reduction. However, re‐analysis of iodine redox data from previous ODZ work suggests that most iodate reduction occurs in sediments, not the water column, and is also decoupled from denitrification. The underlying differences between these regimes have yet to be resolved, but could indicate a role for reduced sulfur in iodate reduction if the sulfate reduction zone is closer to the sediment‐water interface in ODZ shelf sediments than in Oregon sediments. Iodate reduction is not a simple function of oxygen depletion, which has important implications for its application as a paleoredox tracer. 
    more » « less
  3. Abstract Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition. 
    more » « less
  4. Abstract Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance. 
    more » « less
  5. Abstract Radium‐226(226Ra) and barium (Ba) exhibit similar chemical behaviors and distributions in the marine environment, serving as valuable tracers of water masses, ocean mixing, and productivity. Despite their similar distributions, these elements originate from distinct sources and undergo disparate biogeochemical cycles, which might complicate the use of these tracers. In this study, we investigate these processes by analyzing a full‐depth ocean section of226Ra activities (T1/2 = 1,600 years) and barium concentrations obtained from samples collected along the US GEOTRACES GP15 Pacific Meridional Transect during September–November 2018, spanning from Alaska to Tahiti. We find that surface waters possess low levels of226Ra and Ba due to export of sinking particulates, surpassing inputs from the continental margins. In contrast, deep waters have higher226Ra activities and Ba concentrations due to inputs from particle regeneration and sedimentary sources, with226Ra inputs primarily resulting from the decay of230Th in sediments. Further, dissolved226Ra and Ba exhibit a strong correlation along the GP15 section. To elucidate the drivers of the correlation, we used a water mass analysis, enabling us to quantify the influence of water mass mixing relative to non‐conservative processes. While a significant fraction of each element's distribution can be explained by conservative mixing, a considerable fraction cannot. The balance is driven using non‐conservative processes, such as sedimentary, rivers, or hydrothermal inputs, uptake and export by particles, and particle remineralization. Our study demonstrates the utility of226Ra and Ba as valuable biogeochemical tracers for understanding ocean processes, while shedding light on conservative and myriad non‐conservative processes that shape their respective distributions. 
    more » « less