skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of KGa‐1b and SHCa‐1 Δ′ 17 O and δ 18 O via Laser Fluorination of Lithium Fluoride Clay Pellets
ABSTRACT RationaleStable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay‐rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed. MethodsWe employed conventional nickel bomb fluorination combined with dual‐inlet isotope ratio mass spectrometry to establish precise δ18O and Δ′17O values for leached clay reference materials KGa‐1b and SHCa‐1, a kaolinite and a hectorite/smectite, respectively. We further measured leached KGa‐1b and SHCa‐1 pressed into pellets with a lithium fluoride as a binding agent for the laser fluorination method, allowing us to test the reproducibility between methods and utilize a standard laser chamber drift correction scheme. ResultsThe laser fluorination technique yielded highly precise and reproducible δ18O and Δ′17O measurements for the KGa‐1b and SHCa‐1, aligning with bomb values of δ18O. This confirms the method's reliability and comparability to conventional isotope measurement techniques while also stressing the importance of proper sample preparation and laser chamber drift corrections. ConclusionsThis study demonstrates that laser fluorination is an effective method for accurately measuring the stable oxygen isotope composition of silicate clays or clay‐rich sediments when corrected with known silicate clay standards. These methods offer a valuable methodology for future research and applications that will significantly improve our understanding of past climate and environmental conditions.  more » « less
Award ID(s):
2102901 2303484
PAR ID:
10661124
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Volume:
39
Issue:
11
ISSN:
0951-4198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Historically, clumped isotope thermometry (T(∆47)) of soil carbonates has been interpreted to represent a warm‐season soil temperature based dominantly on coarse‐grained soils. Additionally, T(∆47) allows the calculation of the oxygen isotope composition of soil water (δ18Ow) in the past using the temperature‐dependent fractionation factor between soil water and pedogenic carbonate, but previous work has not measured δ18Owvalues with which to compare to these archives. Here, we present clumped isotope thermometry of modern soil carbonates from three soils in Colorado and Nebraska, USA, that have a fine‐to‐medium grain size, contain clay, and are representative of many carbonate‐bearing paleosols preserved in the rock record. At two of the three sites, Briggsdale, CO and Seibert, CO, T(∆47) overlaps with mean annual soil temperature (MAST), and the calculated δ18Owoverlaps within uncertainty with measured δ18Owat carbonate bearing depths. At the third site, in Oglala National Grassland, NE, mean T(∆47) is 8–11°C warmer than MAST, and the calculated δ18Owhas a significantly higher isotope value than any observations of δ18Ow. At all three sites, even in the fall season, δ18Owvalues at carbonate bearing depths overlap with spring rainfall δ18Ow, and there is little to no evaporative enrichment of δ2Hwand δ18Owvalues. These data challenge long‐held assumptions that all pedogenic carbonate records a warm‐season bias, and that δ18Owat carbonate‐bearing depths is affected by evaporative enrichment. 
    more » « less
  2. Abstract Tropical Pacific seawater and precipitation stable oxygen isotope data aid in understanding modern oceanic and atmospheric interactions, and these data are particularly valuable as they are archived in isotope‐based paleoclimate records. However, the absence of modern seawater isotope time series limits the ability to identify the atmospheric influences on these data, precluding robust paleoclimate interpretations. We present a new 10 year sub‐monthly record of seawater and precipitation stable oxygen isotope values (δ18Oswand δ18Op) from Koror, Palau. Our dataset indicates that temporally, δ18Oswis strongly influenced by local δ18Op.Both monthly δ18Oswand δ18Opare highly correlated with outgoing longwave radiation across the tropical Pacific, reflecting a Walker Circulation imprint on the surface ocean. Changes in the Palau δ18Osw—salinity relationship correspond to NINO3.4 variability, indicating a difference in how these variables record El Niño Southern Oscillation (ENSO) information, but demonstrating the utility of δ18Oswto reconstruct ENSO variability in the western tropical Pacific. 
    more » « less
  3. null (Ed.)
    Inputs to the Hikurangi subduction zone, offshore North Island, New Zealand, include volcaniclastic conglomerates that were deposited during the Late Cretaceous on the flanks of the subducting basement of Hikurangi Plateau. The overlying succession of pelagic carbonates is early Paleocene to early Pleistocene in age and ranges in composition from calcareous mudstone to muddy chalk and chalk. A thick wedge of Quaternary trench sediments occupies the top of the stratigraphic succession. International Ocean Discovery Program Expedition 375 cored those subduction inputs at two sites. Site U1520 is located on the distal edge of the trench, and Site U1526 is located near the crest of Tūranganui Knoll, where a highly condensed section of pelagic-hemipelagic sediment covers the basalt basement. This report provides the results of 128 X-ray diffraction analyses of the clay-sized fraction (<2 µm spherical settling equivalent), where smectite + illite + undifferentiated (chlorite + kaolinite) + quartz = 100%. Clay minerals in the altered volcaniclastic conglomerates and basalt consist almost exclusively of smectite. At Site U1520, the normalized abundance of smectite in overlying biocalcareous sediments ranges from 28.3 to 72.9 wt% (mean = 54.2 wt%), whereas the abundance of illite ranges from 16.1 to 49.0 wt% (mean = 32.0 wt%). The range for undifferentiated chlorite + kaolinite is 0.3–17.8 wt% (mean = 7.4 wt%), and the range for clay-sized quartz is 2.7–20.5 wt% (mean = 6.4 wt%). Upsection depletion of smectite in those sediments is balanced by upsection enrichment of illite. That same age-dependent trend is evident in coeval biocalcareous drift sediments from Ocean Drilling Program Sites 1123 (North Chatham drift) and 1124 (Rekohu drift). Moving downsection at Site U1520, indicators of clay diagenesis are inconsistent. Values of illite crystallinity index increase (i.e., peak broadening), whereas the proportion of illite within illite/smectite mixed-layer clays increases with depth. 
    more » « less
  4. Abstract RationaleThe use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS). MethodsPaired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). ResultsPaired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference. ConclusionsThe noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear. 
    more » « less
  5. Abstract Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets. 
    more » « less