skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of Future Land Use Variability on Nutrient Loads in a Fast‐Urbanizing Landscape
ABSTRACT Urbanization, driven by population growth, alters watershed hydrology and nutrient runoff. However, the complex interplay between urbanization and nutrients in regional watersheds remains an open question. This study assessed how urbanization affects streamflow, total nitrogen (TN), and total phosphorus (TP) loads in six diverse Florida watersheds covering an area of 10,600 km2. This was carried out by introducing 2070 land use/land cover (LULC) projections to a watershed hydrology/water quality model. We investigated how different levels of urban density, as a proxy for urbanization patterns, affect streamflow and nutrient variability. Results indicate that urban land could increase from 14% to 27% in 2070. This expansion could lead to monthly streamflow increases of 0%–36%, based on watershed and urbanization patterns. Future TP loads could change by −8% to +140%, with decreases attributed to LULC transitions from high‐use fertilizer agriculture to low/medium density residential classes. Projected TN loads are more consistent, with simulated changes of −1% to +26%. Among LULC transitions, the largest increases in TP and TN are caused by potential urbanization of freshwater wetlands. This study provides knowledge relevant to regions undergoing similar urbanization trends, enabling managers to make better land development plans with water quality considerations. It also contributes a detailed modeling framework that can be adopted even with the use of different LULC datasets and software.  more » « less
Award ID(s):
1930451
PAR ID:
10661790
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
America Water Resources Association
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
61
Issue:
2
ISSN:
1093-474X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cheema, MJM (Ed.)
    The changes in energy balance resulting from land-use change may significantly affect the amount and timing of water loss to the atmosphere as evapotranspiration (ET). Also, these will impact water fluxes in the watershed system, influencing runoff rate, flow volume, intensity, and frequency of floods. During the past century, land-use change in the SuAsCo (Sudbury-Assabet and Concord) watershed has altered basin hydrology, sediment, and nutrient load that is detrimental to water resources in SuAsCo. This study uses an integrated physically-based model Hydrological Simulation Program-FORTRAN (HSPF), along with Land Transformation Model (LTM), to assess predicted temporal and spatial changes in water, nutrient, and sediment yields for future land-use scenarios of 2035, 2065, and 2100. Results showed that a 75% increase in effective impervious area and a 50% decrease in forest area in 2100 (from 2005 baseline levels) are projected to cause a 3% increase in annual streamflow and a 69% increase in total yearly mean surface runoff. The average annual total suspended solid (TSS) yield at the watershed outlet is estimated to increase by 54% in 2100. An increase of 12% and 13% concentrations of average annual total phosphorus (TP) and total nitrogen (TN) are predicted by 2100 due to urban expansion and increased runoff volume. This integrated modeling approach will inform watershed managers and landowners about critical areas of the SuAsCo watershed to apply best management practices (BMPs) to mitigate the effects of land-use land cover (LULC) change. 
    more » « less
  2. Abstract Agricultural land cover in the U.S. Midwest is a major source of nutrient pollution that has led to impairment of stream water quality. This study examines the impact of a forested state park on nutrient concentrations within an agriculturally dominated watershed. Water samples were collected over a 2‐year study period from eight stream sampling sites along four creeks and processed for total nitrogen (TN), nitrate (), total phosphorus (TP), and orthophosphate (). Hydrology, channel morphology, and remotely sensed land cover and vegetation data were also collected and analyzed within the study area. Results indicate that water quality responses to a forested state park vary between TN, , TP, and , and water quality variables are uniquely influenced by watershed and stream characteristics. The greatest water quality benefits most frequently occurred within the two smallest study streams with the greatest residence times and proportion of watershed areas within the forested state park. Overall, the greatest improvements to water quality occurred during periods of low stream discharge and when riparian vegetation was greenest. The results of this study suggest that conservation of forested areas within agriculturally dominated watersheds can provide water quality improvements in the U.S. Midwest. Targeting watersheds that drain small streams with long residence times for conservation may be most beneficial to improving water quality. 
    more » « less
  3. Agricultural land use is typically associated with high stream nutrient concentrations and increased nutrient loading to lakes. For lakes, evidence for these associations mostly comes from studies on individual lakes or watersheds that relate concentrations of nitrogen (N) or phosphorus (P) to aggregate measures of agricultural land use, such as the proportion of land used for agriculture in a lake’s watershed. However, at macroscales (i.e., in hundreds to thousands of lakes across large spatial extents), there is high variability around such relationships and it is unclear whether considering more granular (or detailed) agricultural data, such as fertilizer application, planting of specific crops, or the extent of near‐stream cropping, would improve prediction and inform understanding of lake nutrient drivers. Furthermore, it is unclear whether lake N and P would have different relationships to such measures and whether these relationships would vary by region, since regional variation has been observed in prior studies using aggregate measures of agriculture. To address these knowledge gaps, we examined relationships between granular measures of agricultural activity and lake total phosphorus (TP) and total nitrogen (TN) concentrations in 928 lakes and their watersheds in the Northeastern and Midwest U.S. using a Bayesian hierarchical modeling approach. We found that both lake TN and TP concentrations were related to these measures of agriculture, especially near‐stream agriculture. The relationships between measures of agriculture and lake TN concentrations were more regionally variable than those for TP. Conversely, TP concentrations were more strongly related to lake‐specific measures like depth and watershed hydrology relative to TN. Our finding that lake TN and TP concentrations have different relationships with granular measures of agricultural activity has implications for the design of effective and efficient policy approaches to maintain and improve water quality. 
    more » « less
  4. Riparian buffer zones (RBZs) provide multiple benefits to watershed ecosystems. We aimed to conduct an extensive sensitivity analysis of the RBZ designs to climate change nutrient and sediment loadings to streams. We designed 135 simulation scenarios starting with the six baselines RBZs (grass, urban, two-zone forest, three-zone forest, wildlife, and naturalized) in three 12-digit Hydrologic Unit Code watersheds within the Albemarle-Pamlico river basin (USA). Using the hydrologic and water quality system (HAWQS), we assessed the sensitivity of the designs to five water quality indicator (WQI) parameters: dissolved oxygen (DO), total phosphorous (TP), total nitrogen (TN), sediment (SD), and biochemical oxygen demand (BD). To understand the climate mitigation potential of RBZs, we identified a subset of future climate change projection models of air temperature and precipitation using EPA’s Locating and Selecting Scenarios Online tool. Analyses revealed optimal RBZ designs for the three watersheds. In terms of watershed ecosystem services sustainability, the optimal Urban RBZ in contemporary climate (1983–2018) reduced SD from 61–96%, TN from 34–55%, TP from 9–48%, and BD from 53–99%, and raised DO from 4–10% with respect to No-RBZ in the three watersheds. The late century’s (2070–2099) extreme mean annual climate changes significantly increased the projected SD and BD; however, the addition of urban RBZs was projected to offset the climate change reducing SD from 28–94% and BD from 69–93% in the watersheds. All other types of RBZs are also projected to fully mitigate the climate change impacts on WQI parameters except three-zone RBZ. 
    more » « less
  5. There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km 2 of the Chesapeake Bay region. These 10 longitudinal stream flowpaths are drained by watersheds experiencing either urban degradation, forest and wetland conservation, or stream and floodplain restoration. Along the 10 longitudinal stream flowpaths, we monitored over 300 total sampling sites along a combined stream length of 337 km. Synoptic monitoring along longitudinal flowpaths revealed: (1) increasing, decreasing, piecewise, or no trends and transitions in water quality with increasing distance downstream, which provide insights into water quality processes along flowpaths; (2) longitudinal trends and transitions in water quality along flowpaths can be quantified and compared using simple linear and non-linear statistical relationships with distance downstream and/or land use/land cover attributes, (3) attenuation and transformation of chemical cocktails along flowpaths depend on: spatial scales, pollution sources, and transitions in land use and management, hydrology, and restoration. We compared our LSS patterns with others from the global literature to synthesize a typology of longitudinal water quality trends and transitions in streams and rivers based on hydrological, biological, and geochemical processes. Applications of LSS monitoring along flowpaths from our results and the literature reveal: (1) if there are shifts in pollution sources, trends, and transitions along flowpaths, (2) which pollution sources can spread further downstream to sensitive receiving waters such as drinking water supplies and coastal zones, and (3) if transitions in land use, conservation, management, or restoration can attenuate downstream transport of pollution sources. Our typology of longitudinal water quality responses along flowpaths combines many observations across suites of chemicals that can follow predictable patterns based on watershed characteristics. Our typology of longitudinal water quality responses also provides a foundation for future studies, watershed assessments, evaluating watershed management and stream restoration, and comparing watershed responses to non-point and point pollution sources along streams and rivers. LSS monitoring, which integrates both spatial and temporal dimensions and considers multiple contaminants together (a chemical cocktail approach), can be a comprehensive strategy for tracking sources, fate, and transport of pollutants along stream flowpaths and making comparisons of water quality patterns across different watersheds and regions. 
    more » « less