skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-term effects of land-use change on water resources in urbanizing watersheds
The changes in energy balance resulting from land-use change may significantly affect the amount and timing of water loss to the atmosphere as evapotranspiration (ET). Also, these will impact water fluxes in the watershed system, influencing runoff rate, flow volume, intensity, and frequency of floods. During the past century, land-use change in the SuAsCo (Sudbury-Assabet and Concord) watershed has altered basin hydrology, sediment, and nutrient load that is detrimental to water resources in SuAsCo. This study uses an integrated physically-based model Hydrological Simulation Program-FORTRAN (HSPF), along with Land Transformation Model (LTM), to assess predicted temporal and spatial changes in water, nutrient, and sediment yields for future land-use scenarios of 2035, 2065, and 2100. Results showed that a 75% increase in effective impervious area and a 50% decrease in forest area in 2100 (from 2005 baseline levels) are projected to cause a 3% increase in annual streamflow and a 69% increase in total yearly mean surface runoff. The average annual total suspended solid (TSS) yield at the watershed outlet is estimated to increase by 54% in 2100. An increase of 12% and 13% concentrations of average annual total phosphorus (TP) and total nitrogen (TN) are predicted by 2100 due to urban expansion and increased runoff volume. This integrated modeling approach will inform watershed managers and landowners about critical areas of the SuAsCo watershed to apply best management practices (BMPs) to mitigate the effects of land-use land cover (LULC) change.  more » « less
Award ID(s):
2120948
PAR ID:
10482168
Author(s) / Creator(s):
;
Editor(s):
Cheema, MJM
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS Water
Volume:
2
Issue:
4
ISSN:
2767-3219
Page Range / eLocation ID:
e0000083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil erosion and sedimentation problems remain a major water quality concern for making watershed management policies in the Mississippi River Basin (MRB). It is unclear whether the observed decreasing trend of stream suspended sediment loading to the mouth of the MRB over the last eight decades truly reflects a decline in upland soil erosion in this large basin. Here, we improved a distributed regional land surface model, the Dynamic Land Ecosystem Model, to evaluate how climate and land use changes have impacted soil erosion and sediment yield over the entire MRB during the past century. Model results indicate that total sediment yield significantly increased during 1980–2018, despite no significant increase in annual precipitation and runoff. The increased soil erosion and sediment yield are mainly driven by intensified extreme precipitation (EP). Spatially, we found notable intensified EP events in the cropland‐dominated Midwest region, resulting in a substantial increase in soil erosion and sediment yield. Land use change played a critical role in determining sediment yield from the 1910s to the 1930s, thereafter, climate variability increasingly became the dominant driver of soil erosion, which peaked in the 2010s. This study highlights the increasing influences of extreme climate in affecting soil erosion and sedimentation, thus, water quality. Therefore, existing forest and cropland Best Management Practices should be revisited to confront the impacts of climate change on water quality in the MRB. 
    more » « less
  2. Abstract Understanding how land cover change will impact water resources in snow‐dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics‐based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind‐scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions. 
    more » « less
  3. The land systems between the humid and arid zones around the globe are critical to agricultural production and are characterized by a strong integration of the land use and water dynamics. In the southern Great Plains (SGP) of the United States, lakes and farm ponds are essential components in the land systems, and they provide unique habitats for wildlife, and critical water resources for irrigation and municipal water supplies. The conversion of the marginal grasslands to switchgrass (Panicum virgatum) biofuel feedstock for energy production has been proposed in the region. However, we have limited experimental data to assess the impact of this potential land-use change on the surface runoff, which is the primary water source for surface impoundments. Here, we report the results from a paired experimental watershed study that compared the runoff and sediment responses that were related to the conversion of prairie to a low-input biomass production system. The results show no significant change in the relationship between the event-based runoff and the precipitation. There was a substantial increase in the sediment yield (328%) during the conversion phase that was associated with the switchgrass establishment (i.e., the site preparation, herbicide application, and switchgrass planting). Once the switchgrass was established, the sediment yield was 21% lower than the nonconverted watershed. Our site-specific observations suggest that switchgrass biofuel production systems will have a minimum impact on the existing land and water systems. It may potentially serve as an environmentally friendly and economically viable alternative land use for slowing woody encroachment on marginal lands in the SGP. 
    more » « less
  4. Abstract A three‐stage precipitation partitioning framework is proposed to study the climate controls on mean annual groundwater evapotranspiration (GWET) for 33 gauged watersheds in west‐central Florida. Daily GWET, total evapotranspiration (ET), groundwater recharge, base flow, and total runoff are simulated by the Integrated Hydrologic Model, which dynamically couples a surface water model (HSPF) and a groundwater flow model (MODFLOW). The roles of GWET on long‐term water balance are quantified by four ratios. The ratios of GWET to total available water, watershed wetting, ET, and recharge decrease exponentially with watershed aridity index (WAI), which is defined as the ratio of potential evapotranspiration to total available water. In the one‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and available water for ET (i.e., they‐axis of Budyko curve) decreases with WAI. In the two‐stage precipitation partitioning framework, the contribution of GWET to the ratio between total ET and watershed wetting (i.e., Horton index) decreases with WAI. The changes in GWET caused by intra‐monthly (IM) climate variability are the highest among the temporal scales of climate variability investigated to understand controls on GWET. The inter‐annual, intra‐annual, and IM climate variabilities lead to increase of GWET; but the sub‐daily climate variability results in decrease of GWET. For the third stage of partitioning, given the same ratio of potential GWET to available water for GWET, higher percentage of forest and wetland and lower percentage of impervious land contribute to higher ratio of GWET to available water for GWET. 
    more » « less
  5. Abstract Recent cyanobacterial blooms in otherwise unproductive lakes may be warning signs of impending eutrophication in lakes important for recreation and drinking water, but little is known of their historical precedence or mechanisms of regulation. Here, we examined long‐term sedimentary records of both general and taxon‐specific trophic proxies from seven lakes of varying productivity in the northeastern United States to investigate their relationship to historical in‐lake, watershed, and climatic drivers of trophic status. Analysis of fossil pigments (carotenoids and chlorophylls) revealed variable patterns of past primary production across lakes over two centuries despite broadly similar changes in regional climate and land use. Sediment abundance of the cyanobacteriumGloeotrichia,a large, toxic, nitrogen‐fixing taxon common in recent blooms in this region, revealed that this was not a new taxon in the phytoplankton communities but rather had been present for centuries. Histories ofGloeotrichiaabundance differed strikingly across lakes and were not consistently associated with most other sediment proxies of trophic status. Changes in ice cover most often coincided with changes in fossil pigments, and changes in watershed land use were often related to changes inGloeotrichiaabundance, although no single climatic or land‐use factor was associated with proxy changes across all seven lakes. The degree to which changes in lake sediment records co‐occurred with changes in the timing of ice‐out or agricultural land use was negatively correlated with the ratio of watershed area to lake area. Thus, both climate and land management appeared to play key roles in regulation of primary production in these lakes, although the manner in which these factors influenced lakes was mediated by catchment morphometry. Improved understanding of the past interactions between climate change, land use, landscape setting, and water quality underscores the complexity of mechanisms regulating lake and cyanobacterial production and highlights the necessity of considering these interactions—rather than searching for a singular mechanism—when evaluating the causes of ongoing changes in low‐nutrient lakes. 
    more » « less