skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Material Tests, in Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures
Material testing includes concrete compressive strength test and steel tension coupon tests. Concrete cylinder tests were conducted to measure the compressive strength of concrete used for composite slab on MST specimen at different days. Nine 4”x8” concrete cylinders were casted for compressive strength tests. Compressive strength for different days; 14, 21, and 28, were conducted. Compressive strength tests were conducted following ASTM C39. The test were conducted in-house at Lehigh University. Steel tension coupon tests were conducted to measure the material properties of collector specimens and MST shear tab. Plate type 2” gage length tension coupons were used for tensile strength testing. Coupons were extracted from flanges of TFW and AFW specimens, web and shear tab of MST specimen. The tensile strength testings were conducted following ASTM E8.  more » « less
Award ID(s):
1662816
PAR ID:
10661915
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Seismic Collector Compressive strength concrete cylinder ASTM C39 Tensile strength tension coupon ASTM E8
Format(s):
Medium: X
Institution:
Lehigh University/ University of Arizona
Sponsoring Org:
National Science Foundation
More Like this
  1. Lightweight and strong components are essential for reducing energy consumption and enhancing efficiency. Lattice structures are one such geometry utilized to achieve weight reduction. This study investigates the mechanical properties of various lattice structures fabricated from Maraging Steel (EOS MS1) using the Direct Metal Laser Sintering (DMLS) method. The samples include three distinct cellular geometries: body-centered cubic (BCC), face-centered cubic (FCC), and octet truss configurations, which are subjected to tensile and compressive tests. The primary goal of this research is to evaluate the impact of heat treatment on the mechanical properties of cellular architecture under tensile and compressive loading conditions. Destructive, nondestructive testing, and simulation results were also obtained from different heat treatment processes. It was found that the age-hardened specimens performed the best overall in terms of ultimate tensile/compressive strength and elongation. The top-performing topologies in compression and tension were found to be the octet structure, as they were able to withstand the most loading and straining when compared to the other specimens. 
    more » « less
  2. Abstract Glass fiber reinforced polymer (GFRP) bars are composite materials that, in the field of civil engineering, serve as an alternative for the internal steel reinforcement of concrete structures. The study and development of these material systems in construction are relatively new, requiring targeted research and development to achieve greater adoption. In this scenario, research and standardization play crucial roles. The development and publication of new test methods, material specifications, and other standards, as well as the improvement of the existing ones, allow for quality control, validation, and acceptance. One of these improvements is the evaluation of precision statements of the different ASTM standards related to the physical-mechanical and durability characterization of GFRP bars used as internal concrete reinforcement. Precision refers to how closely test results obtained under specific conditions agree with each other. A precision statement allows potential users to assess the test method’s general suitability for their intended applications. It should provide guidance on the type of variation that can be expected between test results when the method is used in one or more competent laboratories. The present study aims to enhance the precision statements in ASTM standards pertaining to the geometric, material, mechanical, and physical properties required for GFRP bars in concrete reinforcement, including ASTM standards like ASTM D7205M-21, Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars; ASTM D7617M-11(2017), Standard Test Method for Transverse Shear Strength of Fiber-Reinforced Polymer Matrix Composite Bars; and ASTM D7913M-14(2020), Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing, while in accordance with the statistical procedures and calculation methods outlined in ASTM Practices ASTM E177-20, Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, and ASTM E691-22, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method. 
    more » « less
  3. The present study aims to characterize the microvoid sizes and their statistical distribution at the instance of fracture from the fracture surface of steel specimens. To this end, uniaxial tensile tests are conducted on circumferentially notched specimens made of 17-4 PH stainless steel and ASTM A992 high-strength structural steel. The fracture surfaces of the steel test specimens are studied using a digital microscope to quantify the statistical microvoid size distribution. Furthermore, the evaluated microvoid sizes of different fracture locations are mapped with the stress and strain fields. Finally, based on the experimentally evaluated microvoid sizes, an uncoupled fracture model was adopted to predict the fracture displacement and location of ductile fracture initiation in the fractured specimens. The fracture displacements predicted using the calibrated uncoupled fracture model are within the acceptable limit. The fracture initiation locations coincided with the peak strain-averaged stress triaxiality in the fracture specimens. 
    more » « less
  4. In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts. 
    more » « less
  5. Cyclic Collector Force with Rotation Tests on MST were conducted to understand the effect of column rotation on the behavior of Multi-row Bolt Shear Tab (MST) collector connection. A test collector with MST collector connection, was designed, fabricated, and tested under cyclic collector force in presence of forward and backward column rotation with composite slab and in presence of gravity loading. A 2-point gravity loading was applied first to develop the design shear force at the connection. The reaction column was then rotated to prescribed rotation with the help of reaction end actuators while keeping the loading actuators free to move. Then the cyclic collector force loading was applied as force-controlled loading through the loading actuators. The test provides effect of column rotation on MST connection strain demand & evolution, and connection strength. 
    more » « less