skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Assessing, Exploiting, and Mitigating Syntactic Robustness Failures in LLM-Based Code Generation
Rapid advances in the field of Large Language Models (LLMs) have made LLM-based code generation an important area for investigation. An LLM-based code generator takes a prompt as input and produces code that implements the requirements specified in the prompt. Many software requirements include mathematical formulas that specify the expected behavior of the code to be generated. Given a code generation prompt that contains a mathematical formula, a reasonable expectation is that, if the formula is syntactically modified without changing its semantics, the generated code for the modified prompt should be semantically equivalent. We formalize this concept as syntactic robustness and investigate the syntactic robustness of LLMs as code generators. Our experimental assessment demonstrates that LLMs are not syntactically robust for code generation prompts with formulas, especially for the ones that require mathematical reasoning. We investigate attack strategies that can further deteriorate the syntactic robustness of LLMs. Finally, to mitigate syntactic robustness failures in LLMs, we propose a pre-processing step that uses reductions to transform formulas in prompts to a simplified form. Our experimental results demonstrate that the syntactic robustness of LLM-based code generation improves significantly using our approach, improving syntactic robustness of LLMs from 54.05% to 74.42%.  more » « less
Award ID(s):
2124039 2008660
PAR ID:
10662290
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness 
    more » « less
  2. Large language models offer new ways of empowering people to program robot applications-namely, code generation via prompting. However, the code generated by LLMs is susceptible to errors. This work reports a preliminary exploration that empirically characterizes common errors produced by LLMs in robot programming. We categorize these errors into two phases: interpretation and execution. In this work, we focus on errors in execution and observe that they are caused by LLMs being “forgetful” of key information provided in user prompts. Based on this observation, we propose prompt engineering tactics designed to reduce errors in execution. We then demonstrate the effectiveness of these tactics with three language models: ChatGPT, Bard, and LLaMA-2. Finally, we discuss lessons learned from using LLMs in robot programming and call for the benchmarking of LLM-powered end-user development of robot applications. 
    more » « less
  3. Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks (Nguyen et al., 2024; Prather et al., 2024; Mordechai et al., 2024). Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs. 
    more » « less
  4. Code LLMs have the potential to make it easier for non-experts to understand and write code. However, current CodeLLM benchmarks rely on a single expert-written prompt per problem, making it hard to generalize their success to non-expert users. In this paper, we present a new natural-language-to-code benchmark of prompts written by a key population of non-experts: beginning programmers. StudentEval contains 1,749 prompts written by 80 students who have only completed one introductory Python course. StudentEval contains numerous non-expert prompts describing the same problem, enabling exploration of key factors in prompt success. We use StudentEval to evaluate 12 Code LLMs and find that StudentEval is a better discriminator of model performance than existing benchmarks. Our analysis of student prompting strategies reveals that nondeterministic LLM sampling can mislead students about the quality of their descriptions, a finding with key implications for Code LLMs in education. 
    more » « less
  5. Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective- Prompt-Anchoring. 
    more » « less