Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 31, 2026
- 
            Free, publicly-accessible full text available March 31, 2026
- 
            Just, RenĂ©; Fraser, Gordon (Ed.)Starting with a random initial seed, fuzzers search for inputs that trigger bugs or vulnerabilities. However, fuzzers often fail to generate inputs for program paths guarded by restrictive branch conditions. In this paper, we show that by first identifying rare-paths in programs (i.e., program paths with path constraints that are unlikely to be satisfied by random input generation), and then, generating inputs/seeds that trigger rare-paths, one can improve the coverage of fuzzing tools. In particular, we present techniques 1) that identify rare paths using quantitative symbolic analysis, and 2) generate inputs that can explore these rare paths using path-guided concolic execution. We provide these inputs as initial seed sets to three state of the art fuzzers. Our experimental evaluation on a set of programs shows that the fuzzers achieve better coverage with the rare-path based seed set compared to a random initial seed.more » « less
- 
            Similarity analysis plays a crucial role in various software engineering tasks, such as detecting software changes, version merging, identifying plagiarism, and analyzing binary code. Equivalence analysis, a stricter form of similarity, focuses on determining whether different programs or versions of the same program behave identically. While extensive research exists on code and binary similarity as well as equivalence analysis, there is a lack of quantitative reasoning in these areas. Non-equivalence is a spectrum that requires deeper exploration, as it can manifest in different ways across the input domain space. This paper emphasizes the importance of quantitative reasoning on non-equivalence which arises due to semantic differences. By quantitatively reasoning about non-equivalence, it becomes possible to identify specific input ranges for which programs are equivalent or non-equivalent. We aim to address the gap in quantitative reasoning in symbolic similarity analysis, enabling a more comprehensive understanding of program behavior.more » « less
- 
            Information leaks are a significant problem in modern software systems. In recent years, information theoretic concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent approach is to use symbolic execution together with model counting constraints solvers in order to quantify information leakage. There are at least two reasons for unsoundness in quantifying information leakage using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative information flow analysis that bounds the information leakage both for the cases where the program behavior is not fully explored and the model counting constraint solver is unable to provide a precise model count but provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing sound bounds for information leakage in C programs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
