LiMn0.6Fe0.4PO4has attracted attention as a promising, high-energy, and cost-effective alternative to LiFePO4(LFP) for lithium-ion batteries. However, its thermal stability, especially at full cell level, remains less understood compared to LFP. This study compares the cycling performance and thermal stability of LiMn0.6Fe0.4PO4/graphite and LFP/graphite pouch cells using a consistent electrolyte formulation: 1.2 m lithium bis(fluorosulfonyl)imide (LiFSI) in ethylene carbonate (EC):ethyl methyl carbonate (EMC):dimethyl carbonate (DMC) (25:5:70 by volume) with 2 wt% vinylene carbonate (VC). Thermal stability was evaluated with two ∼250 mAh pouch cells through accelerating rate calorimetry at elevated temperatures. After roughly 275 cycles at C/3 and 40 °C, the LFP/graphite cells retained 91% of their initial capacity, while LMFP/graphite cells retained 89%, indicating slightly better electrochemical stability for LFP cells. Exothermic reactions in LMFP cells initiated around 125 °C, compared to 140 °C for LFP, implying higher thermal vulnerability. Despite this, both cell types exhibited similar self-heating rates below 0.1 °C min−1, demonstrating strong safety performance. Overall, although LMFP offers a higher voltage window, its thermal stability and cycling performance still slightly lag behind LFP.
more »
« less
Unveiling the Thermal Stability of Sodium Ion Pouch Cells Using Accelerating Rate Calorimetry
The thermal stability of ∼420 mAh Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells was investigated using accelerating rate calorimetry (ARC) at elevated temperatures. 1 m NaPF6in propylene carbonate (PC):ethyl methyl carbonate (EMC) (1:1 by volume) was used as a control electrolyte. Adding 2 wt% fluoroethylene carbonate to the electrolyte improves the cell’s thermal stability by decreasing the self-heating rate (SHR) across the whole testing temperature range. The selected states-of-charge (SoC), including 70%, 84%, and 100%, exhibit minimal impact on the exothermic behavior, except for a slight decrease in SHR after ∼275 °C at 70% SoC. When compared to traditional lithium-ion batteries operating at 100% SoC, NCMFNZO/HC pouch cells demonstrate inferior thermal stability compared to LiFePO4(LFP)/graphite pouch cells, displaying a higher SHR from 220 to 300 °C. LiNi0.8Mn0.1Co0.1O2/graphite + SiOxpouch cells exhibit the worst safety performance, with an early onset temperature of ∼100 °C and the highest SHR across the entire temperature range. These results offer a direct comparison of the impact of SoC and electrolyte compositions on the thermal stability of SIBs at elevated temperatures, highlighting that there is still room for improvement in SIBs safety performance compared to LFP/graphite chemistry.
more »
« less
- Award ID(s):
- 2301719
- PAR ID:
- 10662360
- Publisher / Repository:
- IOP Publishing Limited
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 171
- Issue:
- 7
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- 070512
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The effects of fluoroethylene carbonate (FEC) electrolyte additive on charged sodium ion electrode/electrolyte reactivity at elevated temperatures were investigated using accelerating rate calorimetry (ARC). The beneficial effect of FEC on cell lifetime was demonstrated using Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells first prior to ARC measurements. Electrodes from these pouch cells were utilized as sample materials and 1.0 M NaPF6in propylene carbonate (PC):ethyl methyl carbonate (EMC) (1:1 by vol.) was chosen as control electrolyte. Adding 2 wt% and 5 wt% FEC to the electrolyte does not significantly affect the reactivity of de-sodiated NCMFNZO compared to the control electrolyte. However, the addition of FEC obviously changed the reactivity between sodiated HC and electrolytes, especially by showing a suppression on the exothermal behavior between 160 °C and 230 °C. These results give a head to head comparison of the reactivity of FEC additive containing electrolytes with charged sodium ion electrode materials at elevated temperatures and show that the use of FEC at additive levels should not compromise the cell safety when extending cell lifetime.more » « less
-
Sodium-ion batteries (SIBs) with Earth-abundant elements are promising for global electrification, but electrolyte stability impacts electrochemical performance and safety. This study compares non-fluorinated 1,2-diethoxyethane (DEE) and fluorinated 1,2-bis(2,2-difluoroethoxy)ethane (F4DEE) as electrolyte solvents in Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells up to 4.0 V. Fluorination slightly reduces ionic conductivity and increases viscosity but significantly enhances electrochemical stability and safety. Cells with F4DEE exhibit lower impedance, reduced gas evolution, and less voltage decay during high-voltage storage at 40 °C. Long-term cycling shows ∼85% capacity retention after 500 cycles at 25 °C and ∼80% at 40 °C with less transition metal dissolution, outperforming DEE-based cells. Isothermal microcalorimetry reveals lower parasitic heat generation with F4DEE, while soft X-ray absorption spectroscopy confirms stabilized Ni and Mn oxidation states, indicating suppressed electrolyte oxidation. Accelerating rate calorimetry reveals improved thermal stability with F4DEE. These findings highlight fluorinated ether solvents as a promising approach to enhance SIB lifespan and safety, with ongoing challenges requiring further solvent and additive optimization.more » « less
-
Traditional linear carbonates including dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) were investigated as co-solvents for the dimethyl-2,5-dioxahexane carboxylate (DMOHC)-based electrolyte in Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells. The EMC-containing cell displays excellent electrochemical performance, exhibiting only a 1.6 mAh irreversible capacity loss during 500 h of storage at 4 V and 40 °C, and maintaining over 80% capacity retention after 200 cycles up to 4 V at 40 °C. Severe gas evolution and Na plating issues are present in all the tested systems.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
An official website of the United States government

