Harris County, Texas, remains at continuous risk to mosquito-borne diseases due to its geographic landscape and abundance of medically important mosquito vectors. Targeted mitigation of these mosquitoes requires accurate identification of these mosquitoes taxa. Currently, there is a paucity of genetic information to inform molecular identification and phylogenetic relationships beyond well-studied mosquito species. Here we utilized a genome skimming approach using shallow shot gun sequencing to generate data and assemble the mitochondrial genomes of 37 mosquito species collected in Harris County, Texas. This report includes the complete mitochondrial genome for 25 newly sequenced species spanning 10 genera; the genomes were consistent with reference genomes in the GenBank database having 37 genes (13 protein-coding, 2 rRNA and 22 tRNA), and average AT content of 78.74%. Bayesian and maximum likelihood tree topologies using just the easily aligned 13 concatenated protein coding genes confirmed phylogenetic placement of species for Aedes, Anopheles and Culex genera clustering in single clades as expected. Furthermore, this approach provided more robust phylogenetic placement/identity of study taxa when compared to the use of the traditional cytochrome oxidase I partial gene barcode sequence for molecular identification. This study demonstrates the utility of genome skimming as a cost-effective alternative approach to generate reference sequences for the validation of mosquito identification and taxonomic rectification, knowledge necessary for guiding targeted vector interventions.
more »
« less
Detection of invasive Aedes vittatus mosquitoes in Jamaica: molecular identification and surveillance implications
Abstract BackgroundAedes vittatus, an emerging invasive mosquito of significant public health concern has slowly made its way onto the global radar. With a known geographical range in Africa and Asia, where it is a competent vector for several arboviruses, this mosquito has now been reported in the Americas. As the spread of this mosquito has been partly linked to transcontinental trade and travel, Jamaica, the largest English-speaking country in the Caribbean, which serves as a central hub for trade and transport throughout the region, has been on alert since its identification in neighboring Dominican Republic and Cuba. MethodBG sentinel traps baited with dry ice and a Prokopack aspirator were used to collect adult mosquitoes whereas disposable plastic pipettes were utilized for the collection of immature stages. Larvae were reared to adults, and all mosquitoes were identified using taxonomic keys. Using a genome skimming approach, the mitochondrial genome from two specimens was sequenced and a section of thecytochrome c oxidase subunit Igene was extracted from each mitochondrial genome and used for phylogenetic analysis. ResultsThrough ongoing surveillance efforts from January 2023 to October 2024, we report the detection ofAe.vittatusacross six locations in four parishes in Jamaica. Both larvae and adults were collected from rural and urban areas in the country. Additionally, we present the first complete annotated mitochondrial genomes from two specimens of this invasive mosquito species. Phylogenetic analysis using thecytochrome c oxidase subunit Igene extracted from the derived mitochondrial genomes of JamaicanAe.vittatusand available sequences from the GenBank database revealed clustering with specimens from Cuba, Nepal, and India. ConclusionsThis study is the first confirmed report ofAe.vittatusin Jamaica. Furthermore, it highlights the benefits of routine surveillance and the power of molecular approaches to identify invasive species and their potential origins.
more »
« less
- Award ID(s):
- 2134862
- PAR ID:
- 10662419
- Publisher / Repository:
- BioMed Central (BMC)
- Date Published:
- Journal Name:
- Parasites & Vectors
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1756-3305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Christofferson, Rebecca C (Ed.)BackgroundAnopheles stephensiis an invasive malaria vector in Africa that threatens to put an additional 126 million people at risk of malaria if it continues to spread. The island nation of Mauritius is highly connected to Asia and Africa and is at risk of introduction due to this connectivity. For early detection ofAn.stephensi, the Vector Biology and Control Division under the Ministry of Health in Mauritius, leveraged a well-establishedAedesprogram, asAn.stephensiis known to shareAedeshabitats. These efforts triggered multisectoral coordination and cascading benefits of integrated vector and One Health approaches. MethodsBeginning June 2021, entomological surveys were conducted at points of entry (seaport, airport) and on ships transporting livestock in collaboration with the Civil Aviation Department, the Mauritian Port Authority and National Veterinary Services.A total of 18, 39, 723 mosquito larval surveys were respectively conducted in the airport, seaport, and other localities in Mauritius while two, 20, and 26 adult mosquito surveys were respectively conducted in the airport, seaport, and twenty-six animal assembly points. Alongside adult mosquito surveys, surveillance of vectors of veterinary importance (e.g.-Culicoidesspp.) was also carried out in collaboration with National Parks and Conservation Service and land owners. ResultsA total of 8,428 adult mosquitoes were collected and 1,844 larval habitats were positive for mosquitoes. All collected mosquitoes were morphologically identified and 151Anophelesand 339Aedesmosquitoes were also molecularly characterized. Mosquito species detected wereAedes albopictus,Anopheles arabiensis,An.coustani,An.merus,Culex quinquefasciatus,Cx.thalassiusandLutzia tigripes.Anopheles stephensiwas not detected. The One Health approach was shared with the French Agricultural Research Centre for International Development (CIRAD), strengthening collaboration between Mauritius and Réunion Island on vector surveillance at entry points and insecticide resistance monitoring. The Indian Ocean Commission (IOC) was also alerted to the risk ofAn.stephensi, leading to regional efforts supporting trainings and development of a response strategy toAn.stephensibringing together stakeholders from Comoros, Madagascar, Mauritius, Réunion Island and Seychelles. ConclusionsMauritius is a model system showing how existing public health entomology capabilities can be used to enhance vector surveillance and control and create multisectoral networks to respond to any emerging public and veterinary health vector-borne disease threat.more » « less
-
Kittayapong, Pattamaporn (Ed.)BackgroundSugar feeding is an important behavior which may determine vector potential of female mosquitoes. Sugar meals can reduce blood feeding frequency, enhance survival, and decrease fecundity, as well as provide energetic reserves to fuel energy intensive behaviors such as mating and host seeking. Sugar feeding behavior can be harnessed for vector control (e.g. attractive toxic sugar baits). Few studies have addressed sugar feeding ofAedes albopictus, a vector of arboviruses of public health importance, including dengue and Zika viruses. To address this knowledge gap, we assessed sugar feeding patterns ofAe.albopictusfor the first time in its invasive northeastern USA range. Methodology/Principal findingsUsing the cold anthrone fructose assay with robust sample sizes, we demonstrated that a large percentage of both male (49.6%) and female (41.8%)Ae.albopictusfed on plant or homopteran derived sugar sources within 24 hrs prior to capture. Our results suggest that sugar feeding behavior increases when environmental conditions are dry (high saturation deficit) and may vary by behavioral status (host seeking vs. resting). Furthermore, mosquitoes collected on properties with flowers (>3 blooms) had higher fructose concentrations compared to those collected from properties with few to no flowers (0–3). Conclusions/SignificanceOur results provide the first evidence ofAe.albopictussugar feeding behavior in the Northeastern US and reveal relatively high rates of sugar feeding. These results suggest the potential success for regional deployment of toxic sugar baits. In addition, we demonstrate the impact of several environmental and mosquito parameters (saturation deficit, presence of flowers, host seeking status, and sex) on sugar feeding. Placing sugar feeding behavior in the context of these environmental and mosquito parameters provides further insight into spatiotemporal dynamics of feeding behavior forAe.albopictus, and in turn, provides information for evidence-based control decisions.more » « less
-
Abstract BackgroundUrbanization can influence disease vectors by altering larval habitat, microclimates, and host abundance. The global increase in urbanization, especially in Africa, is likely to alter vector abundance and pathogen transmission. We investigated the effect of urbanization and weather on the abundance of two mosquitoes,Aedes aegyptiandAedes albopictus, and infection with dengue, chikungunya, and Zika viruses at 63 sites in six cities spanning a 900-km latitudinal range in Cameroon, Central Africa. MethodsWe used human landing catches and backpack-mounted aspirators to sample mosquitoes and collected larval habitat, host availability, and weather (temperature, precipitation, humidity) data for each site in each city. We analyzed land use and land cover information and satellite photos at varying radii around sites (100 m to 2 km) to quantify the extent of urbanization and the number of structures around each site. We used a continuous urbanization index (UI; range 0–100) that increased with impermeable surface and decreased with forest cover. ResultsUrbanization increased larval habitat, human host availability, andAe. aegyptimosquito abundance.Aedes aegyptiabundance increased 1.7% (95% CI 0.69–2.7%) with each 1 unit increase in the urbanization index in all six cities (Douala, Kribi, Yaounde, Ngaoundere, Garoua, and Maroua) with a 5.4-fold increase from UI = 0 to UI = 100, and also increased with rainfall. In contrast,Ae. albopictusabundance increased with urbanization in one city, but showed no influence of urbanization in two other cites. Across three cities,Ae. albopictusabundance increased with rainfall, temperature, and humidity. Finally, we did not detect Zika, dengue, or chikungunya viruses in any specimens, and found weak evidence of interspecific competition in analyses of adult population growth rates. ConclusionsThese results show that urbanization consistently increasesAe. aegyptiabundance across a broad range of habitats in Central Africa, while effects onAe. albopictuswere more variable and the abundance of both species were influenced by rainfall. Future urbanization of Africa will likely increaseAe. aegyptiabundance, and climate change will likely alter abundance of both species through changes in precipitation and temperature. Graphical Abstractmore » « less
-
Abstract BackgroundMosquitoes and the diseases they transmit pose a significant public health threat worldwide, causing more fatalities than any other animal. To effectively combat this issue, there is a need for increased public awareness and mosquito control. However, traditional surveillance programs are time-consuming, expensive, and lack scalability. Fortunately, the widespread availability of mobile devices with high-resolution cameras presents a unique opportunity for mosquito surveillance. In response to this, the Global Mosquito Observations Dashboard (GMOD) was developed as a free, public platform to improve the detection and monitoring of invasive and vector mosquitoes through citizen science participation worldwide. MethodsGMOD is an interactive web interface that collects and displays mosquito observation and habitat data supplied by four datastreams with data generated by citizen scientists worldwide. By providing information on the locations and times of observations, the platform enables the visualization of mosquito population trends and ranges. It also serves as an educational resource, encouraging collaboration and data sharing. The data acquired and displayed on GMOD is freely available in multiple formats and can be accessed from any device with an internet connection. ResultsSince its launch less than a year ago, GMOD has already proven its value. It has successfully integrated and processed large volumes of real-time data (~ 300,000 observations), offering valuable and actionable insights into mosquito species prevalence, abundance, and potential distributions, as well as engaging citizens in community-based surveillance programs. ConclusionsGMOD is a cloud-based platform that provides open access to mosquito vector data obtained from citizen science programs. Its user-friendly interface and data filters make it valuable for researchers, mosquito control personnel, and other stakeholders. With its expanding data resources and the potential for machine learning integration, GMOD is poised to support public health initiatives aimed at reducing the spread of mosquito-borne diseases in a cost-effective manner, particularly in regions where traditional surveillance methods are limited. GMOD is continually evolving, with ongoing development of powerful artificial intelligence algorithms to identify mosquito species and other features from submitted data. The future of citizen science holds great promise, and GMOD stands as an exciting initiative in this field.more » « less
An official website of the United States government

