Abstract Mental distress among young people has increased in recent years. Research suggests that greenspace may benefit mental health. The objective of this exploratory study is to further understanding of place‐based differences (i.e., urbanity) in the greenspace‐mental health association. We leverage publicly available greenspace data sets to operationalize greenspace quantity, quality, and accessibility metrics at the community‐level. Emergency department visits for young people (ages 24 and under) were coded for: anxiety, depression, mood disorders, mental and behavioral disorders, and substance use disorders. Generalized linear models investigated the association between greenspace metrics and community‐level mental health burden; results are reported as prevalence rate ratios (PRR). Urban and suburban communities with the lowest quantities of greenspace had the highest prevalence of poor mental health outcomes, particularly for mood disorders in urban areas (PRR: 1.19, 95% CI: 1.16–1.21), and substance use disorders in suburban areas (PRR: 1.35, 95% CI: 1.28–1.43). In urban, micropolitan, and rural/isolated areas further distance to greenspace was associated with a higher prevalence of poor mental health outcomes; this association was most pronounced for substance use disorders (PRRUrban: 1.31, 95% CI: 1.29–1.32; PRRMicropolitan: 1.47, 95% CI: 1.43–1.51; PRRRural 2.38: 95% CI: 2.19–2.58). In small towns and rural/isolated communities, poor mental health outcomes were more prevalent in communities with the worst greenspace quality; this association was most pronounced for mental and behavioral disorders in small towns (PRR: 1.29, 95% CI: 1.24–1.35), and for anxiety disorders in rural/isolated communities (PRR: 1.61, 95% CI: 1.43–1.82). The association between greenspace metrics and mental health outcomes among young people is place‐based with variations across the rural‐urban continuum.
more »
« less
A small area analysis of acute exposure to temperatures and mental health in North Carolina
Abstract Increasing evidence suggests that temperatures adversely impact mental and behavioral disorders (MBD). This study explores the effects of temperatures on mental health outcomes using over 5.9 million MBD-related emergency department (ED) visits across three geographical regions of North Carolina (i.e., Mountains, Piedmont, and Coast) from 2016 to 2019. A distributed lag non-linear model (DLNM) with a generalized linear model and quasi-Poisson distribution adjusted for humidity, long-term seasonal time trends, and day of the week examined the acute impact (i.e., 7-day) of temperature on daily MBD-related ED visits at zip code tabulation area (ZCTA) locations. Results were pooled at the region and state levels and reported in reference to the median temperature using a case-time series design for the analysis of small-area data. Stratified analyses were conducted for age, sex, and specific mental-health related ED visits (substance use, mood disorders, anxiety disorders). At the state level, we found significant positive associations between high temperatures (97.5th percentile) and an increase in relative risk (RR) for total MBDs (RR:1.04, 95% CI,1.03–1.05) and psychoactive substance use (RR:1.04, 95% CI, 1.02–1.06). Low air temperatures (2.5th percentile) only increased risk for the elderly (i.e., 65 and older) and predominantly white communities (RR: 1.03, CI: 1.03–1.05). During high temperatures (97.5th percentile), majority-white communities (RR:1.06, CI: 1.01–1.10) and low-income communities had the highest risk for MBDs (RR: 1.05, CI: 1.03–1.07). Our findings suggest there is a positive association between exposure to high temperatures and increased MBD-related ED visits, modified by patient age and place-based sociodemographic (ie., race and income) context.
more »
« less
- Award ID(s):
- 2044839
- PAR ID:
- 10662742
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- International Journal of Biometeorology
- Volume:
- 69
- Issue:
- 4
- ISSN:
- 0020-7128
- Page Range / eLocation ID:
- 805 to 819
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
OBJECTIVES Discrimination has been shown to have profound negative effects on mental and behavioral health and may influence these outcomes early in adulthood. We aimed to examine short-term, long-term, and cumulative associations between different types of interpersonal discrimination (eg, racism, sexism, ageism, and physical appearance discrimination) and mental health, substance use, and well-being for young adults in a longitudinal nationally representative US sample. METHODS We used data from 6 waves of the Transition to Adulthood Supplement (2007–2017, 1834 participants) of the Panel Study of Income Dynamics. Outcome variables included self-reported health, drug use, binge drinking, mental illness diagnosis, Languishing and Flourishing score, and Kessler Psychological Distress Scale score. We used logistic regression with cluster-robust variance estimation to test cross-sectional and longitudinal associations between discrimination frequency (overall, cumulative, and by different reason) and outcomes, controlling for sociodemographics. RESULTS Increased discrimination frequency was associated with higher prevalence of languishing (relative risk [RR] 1.34 [95% CI 1.2–1.4]), psychological distress (RR 2.03 [95% CI 1.7–2.4]), mental illness diagnosis (RR 1.26 [95% CI 1.1–1.4]), drug use (RR 1.24 [95% CI 1.2–1.3]), and poor self-reported health (RR 1.26 [95% CI 1.1–1.4]) in the same wave. Associations persisted 2 to 6 years after exposure to discrimination. Similar associations were found with cumulative high-frequency discrimination and with each discrimination subcategory in cross-sectional and longitudinal analyses. CONCLUSIONS In this nationally representative longitudinal sample, current and past discrimination had pervasive adverse associations with mental health, substance use, and well-being in young adults.more » « less
-
Abstract Growing evidence indicates that extreme environmental conditions in summer months have an adverse impact on mental and behavioral disorders (MBD), but there is limited research looking at youth populations. The objective of this study was to apply machine learning approaches to identify key variables that predict MBD‐related emergency room (ER) visits in youths in select North Carolina cities among adolescent populations. Daily MBD‐related ER visits, which totaled over 42,000 records, were paired with daily environmental conditions, as well as sociodemographic variables to determine if certain conditions lead to higher vulnerability to exacerbated mental health disorders. Four machine learning models (i.e., generalized linear model, generalized additive model, extreme gradient boosting, random forest) were used to assess the predictive performance of multiple environmental and sociodemographic variables on MBD‐related ER visits for all cities. The best‐performing machine learning model was then applied to each of the six individual cities. As a subanalysis, a distributed lag nonlinear model was used to confirm results. In the all cities scenario, sociodemographic variables contributed the greatest to the overall MBD prediction. In the individual cities scenario, four cities had a 24‐hr difference in the maximum temperature, and two of the cities had a 24‐hr difference in the minimum temperature, maximum temperature, or Normalized Difference Vegetation Index as a leading predictor of MBD ER visits. Results can inform the use of machine learning models for predicting MBD during high‐temperature events and identify variables that affect youth MBD responses during these events.more » « less
-
Objectives: Diarrheal disease continues to be a significant cause of morbidity and mortality. We investigated how anomalies in monthly average temperature, precipitation, and surface water storage (SWS) impacted bacterial, and viral diarrhea morbidity in Taiwan between 2004 and 2015. Methods: A multivariate analysis using negative binomial generalized estimating equations was employed to quantify age- and cause-specific cases of diarrhea associated with anomalies in temperature, precipitation, and SWS. Results: Temperature anomalies were associated with an elevated rate of all-cause infectious diarrhea at a lag of 2 months, with the highest risk observed in the under-5 age group (incidence rate ratio [IRR]=1.03, 95% CI, 1.01-1.07). Anomalies in SWS were associated with increased viral diarrhea rates, with the highest risk observed in the under-5 age group at a 2-month lag (IRR= 1.27; 95% CI: 1.14, 1.42) and a lesser effect at a 1-month lag (IRR=1.18; 95% CI, 1.06-1.31). Furthermore, cause-specific diarrheal diseases were significantly affected by extreme weather events in Taiwan. Both extremely cold and hot conditions were associated with an increased risk of all-cause infectious diarrhea regardless of age, with IRRs ranging from 1.03 (95% CI, 1.02-1.12) to 1.18 (95% CI, 1.16-1.40).Conclusions: The risk of all-cause infectious diarrhea was significantly associated with average temperature anomalies in the population aged under 5 years. Viral diarrhea was significantly associated with anomalies in SWS. Therefore, we recommend strategic planning and early warning systems as major solutions to improve resilience against climate change.more » « less
-
Background The United States has experienced high surge in COVID-19 cases since the dawn of 2020. Identifying the types of diagnoses that pose a risk in leading COVID-19 death casualties will enable our community to obtain a better perspective in identifying the most vulnerable populations and enable these populations to implement better precautionary measures. Objective To identify demographic factors and health diagnosis codes that pose a high or a low risk to COVID-19 death from individual health record data sourced from the United States. Methods We used logistic regression models to analyze the top 500 health diagnosis codes and demographics that have been identified as being associated with COVID-19 death. Results Among 223,286 patients tested positive at least once, 218,831 (98%) patients were alive and 4,455 (2%) patients died during the duration of the study period. Through our logistic regression analysis, four demographic characteristics of patients; age, gender, race and region, were deemed to be associated with COVID-19 mortality. Patients from the West region of the United States: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming had the highest odds ratio of COVID-19 mortality across the United States. In terms of diagnoses, Complications mainly related to pregnancy (Adjusted Odds Ratio, OR:2.95; 95% Confidence Interval, CI:1.4 - 6.23) hold the highest odds ratio in influencing COVID-19 death followed by Other diseases of the respiratory system (OR:2.0; CI:1.84 – 2.18), Renal failure (OR:1.76; CI:1.61 – 1.93), Influenza and pneumonia (OR:1.53; CI:1.41 – 1.67), Other bacterial diseases (OR:1.45; CI:1.31 – 1.61), Coagulation defects, purpura and other hemorrhagic conditions(OR:1.37; CI:1.22 – 1.54), Injuries to the head (OR:1.27; CI:1.1 - 1.46), Mood [affective] disorders (OR:1.24; CI:1.12 – 1.36), Aplastic and other anemias (OR:1.22; CI:1.12 – 1.34), Chronic obstructive pulmonary disease and allied conditions (OR:1.18; CI:1.06 – 1.32), Other forms of heart disease (OR:1.18; CI:1.09 – 1.28), Infections of the skin and subcutaneous tissue (OR: 1.15; CI:1.04 – 1.27), Diabetes mellitus (OR:1.14; CI:1.03 – 1.26), and Other diseases of the urinary system (OR:1.12; CI:1.03 – 1.21). Conclusion We found demographic factors and medical conditions, including some novel ones which are associated with COVID-19 death. These findings can be used for clinical and public awareness and for future research purposes.more » « less
An official website of the United States government

