skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Research, Teaching, and Mentorship in STEM Bridge Programs: The 3 Pasos Undergrad Student Experience
I joined the 3 Pasos Program at California Baptist University as an undergraduate teaching assistant, first by working on a research project about the geometry of beehive cells and later by helping with the Primer Paso summer bridge program for high school students. The 3 Pasos program is built around a Familia-Cohort mentorship model that emphasizes community, belonging, and hands-on STEM experiences for underrepresented students. Our project asked a simple but fascinating question: why do bees build hexagonal hives? Exploring this led me to study ideas such as surface-area-to-volume ratios and isoperimetric properties and then share those ideas with younger students. During the summer bridge, I helped design and run activities where students used indirect measurement to estimate the height of buildings, applied dimensional analysis to physical problems, and explored how natural designs like hives connect to mathematical efficiency. My role was to guide students through the problem-solving process, encourage them when they were stuck, and help them present their findings at the end of the program. Pre- and post-program surveys were administered to measure changes in non-cognitive factors such as academic self-efficacy, sense of belonging, motivation, academic hope, and knowledge of campus resources, and learning assessments were conducted to measure gains in academic knowledge and skills taught during the bridge curriculum. The results were encouraging: participants reported increased confidence in tackling STEM problems and greater excitement about seeing math in everyday contexts. This work illustrates how combining research, teaching, and near-peer mentoring can support student learning and persistence in STEM through a cohort-based model.  more » « less
Award ID(s):
2345379
PAR ID:
10662910
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
American Institute of Chemical Engineers (AIChE)
Date Published:
Edition / Version:
1
Page Range / eLocation ID:
1-2
Subject(s) / Keyword(s):
near-peer mentoring STEM education summer bridge familia-cohort
Format(s):
Medium: X Size: 128KB Other: pdf
Size(s):
128KB
Location:
Boston, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Cook, S; Katz, B; Moore-Russo, D (Ed.)
    In this report, we share the design of a year-long professional development program for university math instructors that we developed and refined as the Anti-deficit Learning and Teaching Project (Adelante). The program is a community learning project wherein minoritized students, STEM peer mentors, and math instructors (graduate students and instructional faculty) build relationships as they share their knowledge and experiences with race, gender, and mathematics. Culturally relevant pedagogy (Ladson-Billing, 1995) frames the goals of the community learning in terms of deep mathematical knowledge, cultural knowledge, and sociopolitical consciousness. The program activities are inspired by the Funds of Knowledge for Teaching project (Moll et al., 1992) wherein teachers are offered opportunities to build meaningful relationships with students and their communities. An anti-deficit perspective (Adiredja et al., 2020) guides the learning experience for all participants. Not only are minoritized students assumed to have cultural and intellectual assets for learning, but the project also aims to dismantle deficit master narratives (Solórzano & Yosso, 2002) about these students and their capacity to learn. Instructors worked on explicitly challenging deficit narratives about their students as they engaged in the program’s activities. The project also takes an anti-deficit approach to instructor development, focusing on their individual growth and agency, joy in teaching, and mental health. We also position ourselves as learners to the experience and wisdom of the staff and students at the university cultural centers. The core activities for the PD engage teachers to: (a) participate in five PD meetings on anti- deficit teaching and Inquiry Based Learning (IBL) teaching method; (b) lead a five-day math summer bridge workshop in Pre-Calculus, Calculus I, II, Vector Calculus, or Linear Algebra immediately following the meetings; (c) participate in critical conversations about race and gender in STEM with students at the cultural centers; (d) conduct a semi-structure interview with one of their students from the summer workshop about their STEM experience; and (e) participate in group reflection meetings debriefing their experience in the activities. Preliminary analysis of two of the three cohorts of participants found that most instructors developed a more humanizing approach to their teaching and their students (Gutiérrez, 2018). IBL helped instructors to explicitly challenge deficit narratives about minoritized students in the classroom, wherein most observed their students engaging in deep mathematical reasoning. Interviewing one of their students also shifted deficit narratives that developed in the classroom for some instructors. The workshop served as a space to try out previously learned teaching ideas (student centered teaching) without constraints from curriculum and assessments. Doing so reinvigorated many instructors’ passion for teaching, especially those who are more experienced. 
    more » « less
  2. Leveraging Innovation and Optimizing Nurturing in STEM (NSF S-STEM #2130022, known locally as LION STEM Scholars) is a program developed to serve low-income undergraduate Engineering students at Penn State Berks, a regional campus of the Pennsylvania State University. As part of the program, scholars participate in a four-year comprehensive multi- tiered mentoring program and cohort experience. The LION STEM curricular program includes Engineering Ahead (a 4-week summer residential math-intensive bridge program prior to entering college), a first semester First-Year Seminar, and a second semester STEM-Persistence Seminar. Co-curricular activities focus on professional communication skills, financial literacy, career readiness, undergraduate research, and community engagement. The program seeks to accomplish four goals: (1) adapt, implement, and analyze evidence-based curricular and co- curricular activities to support, retain, and graduate a diverse set of the project's engineering scholars, (2) implement, test, and study through research and project evaluation strategies for systematically supporting student academic and career pathways in STEM, including development of STEM identity, (3) contribute to the knowledge base through investigation of the project's four-year multi-modal program so that other colleges may successfully implement similar programs, and (4) disseminate outcomes and findings related to the supports and interventions that promote student success to other institutions working to support low-income STEM students. The purpose of this paper is to analyze data from a repeated-measures design to provide a holistic narrative about the effects that the academic and support activities offered to LION STEM Scholars have on the development of their future-engineer role identity throughout their first year as an undergraduate engineering student. This paper presents data collected from semi- structured (Smith & Osborn, 2007) audio-recorded interviews from the first cohort of LION STEM Scholars (n=7) at three different time points (pre-summer bridge, post-summer bridge, end of first semester) as well as data collected from a written survey at the end of scholars’ second semester. 
    more » « less
  3. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  4. Two cohorts of ten (10) first generation students from the local public school district have been recruited to an NSF S STEM scholarship program that provides navigational support in attending and graduating from a STEM-focused private university. The S-STEM funding complements a university scholarship to meet the full demonstrated need of each student for four years, including on-campus housing to ensure that our scholars can fully participate in the college experience. Intentional programming and a mentor network were implemented with an assets-based framework. Student surveys and program evaluation reveal that the scholarship program components that are the most effective and appreciated by the scholars are free summer courses, paid summer research experiences, and a “support team” that connects them to resources and assists them in navigating the university system. Also important to their sense of belonging at the university was the pre-orientation program (similar to a short bridge program) and their cohort of peers in the S-STEM program. Interviews with the S-STEM scholars were conducted alongside interviews with other first generation students not in the S-STEM program. The research study on student experiences revealed that a distributed and unconnected model of student support can be frustrating and ineffective for students. Instead, a core team of people that guides students to navigate the university system and to provide intentional programming at the appropriate times has emerged to be more effective. Thus, we have adapted our project to meet the needs of the students as we hear their stories and learn from them. To capture our students’ experiences and to engage them in co-designing inclusive college experiences within a supportive university system, we plan to have a design charrette with a graphic illustrator where the scholars will collectively share their stories and brainstorm ideas upon deliberate prompts. The facilitation will elevate multiple voices and reinforce learning and highlight interconnections. The graphic recording will translate the real-time conversations and the key ideas into a shared visual. The graphical artwork will serve as a visual representation of the voices of our scholars and serve as a tool to present what is possible for the university to redefine student experiences and set up systems for all students to succeed. Through this project, we aim to demonstrate and document the sufficient resources needed (e.g., human capital) to support the whole student, and in particular students in which the university system was not initially designed for. The findings provide a great opportunity for the university to strengthen student supports with the proper resources and systems for students, especially from historically underrepresented and marginalized groups. 
    more » « less
  5. Through an NSF S-STEM grant and institutional support, the STEM CAREERS (Career and Research Exploration to Enhance Retention in STEM) Program was created in 2018. This program provided scholarships and programming for high achieving lower-income students from rural and diverse backgrounds for N = 33 students over four years. A summer bridge, common first-year experience course, and interim trip on career exploration created a learning community for the cohort in their first year. Career exploration and networking opportunities introduced students to unimagined careers. Career preparation experiences were built into the remaining 3 years of the program as well as multi-layered mentoring. Mixed methods data collection included pre-post STEM career surveys, annual focus groups, and personal reflections. Some preliminary results include enhanced sense of belonging and strong support network, high placement into prestigious summer research programs and internships, and early admittance into dental school and graduate school. 
    more » « less